自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 收藏
  • 关注

原创 yolov5部署+微信小程序前端展示

使用微信小程序、flask实现yolov5目标检测

2022-08-03 20:03:16 7438 126

原创 ubuntu yolov5中出现这个错误:OSError: locations (loca) table missing的解决方法

在模型训练最后进行验证时报这个错。或者在测试的时候报这个错其中最主要原因就是因为下载中文字体的原因 !!!解决方案:1.在官方网站上下载代码中指定的那个字体 Arial.ttf2.下载之后,将字体放在系统指定文件下:/usr/share/fonts/truetype/dejavu/。具体如下所示:修改完之后,在运行就没问题了。PS:训练自己的数据,只要按照步骤,添加自己的数据->配置环境->修改配置文件。一般都是都是没问题的。在我看来,只要出了OSEr

2022-04-27 17:08:35 1172

原创 Hard-sample Guided Hybrid Contrast Learning for Unsupervised Person Re-Identification

Hard-sample Guided Hybrid Contrast Learning for Unsupervised Person Re-Identification(CVPR2021)

2022-04-10 13:35:12 4247 1

原创 远端服务器安装anaconda并创建conda环境

1.安装anaconda1.1下载anaconda有两种方法:1)在anaconda官网下载对应的安装包(文件名:Anaconda3-2021.11-Linux-x86_64.sh),之后使用scp命令,将本地的安装包上传到服务器上scp path/Anaconda3-2021.11-Linux-x86_64.sh username@远程服务器IP:path2)直接在服务器上使用wget获取安装包wget https://repo.anaconda.com/archive/Ana

2022-03-31 15:32:05 11586 3

原创 Fully Unsupervised Person Re-identification via Selective Contrastive Learning

1. 整体摘要1.1 问题1)完全无监督学习的基本方法就是使用聚类算法或分类算法预测伪标签或者训练一个神经网络用于生成伪标签。但是这种方法依赖于标签预测的正确率,并且使得无监督行人重识别不再是一个检索任务;2)传统的对比学习策略仅使用单个的正样本来定义对比损失,但实际上在训练集中,一个行人对应多张图片。并且把除去正样本以外的所有样本都认为是负样本;3)在以往的研究中,使用全局鉴别特征或者局部鉴别特征进行特征学习,但全局鉴别特征有时候会将不同行人的特征映射为相似的特征表示;局部特征虽然能够为行

2022-03-29 16:02:43 3759 5

原创 Hybrid Contrastive Learning with Cluster Ensemble for Unsupervised Person Re-identification

1.1 背景无监督学习行人重识别指的是,在没有标签的情况下,将行人的查询图像与gallary图像库中进行匹配。目前,处理无监督行人重识别最主流的方式是,采用一个聚类算法产生伪标签,之后根据产生的伪标签训练一个深度神经网络。1.2 问题但是,使用聚类算法生成伪标签的方式,产生的伪标签带有噪声并且对聚类算法中的超参数比较敏感。1.3 提出方案因此,本文中,提出了一种简单但有效的基于对比学习的无监督行人重识别框架,具体地: 提出一种新的无监督混合对比范式,这样可以更好地利用带噪声的为伪标

2022-03-21 21:36:53 896

原创 NAS-ReID系列二___DARTS实现的个人理解

NAS简单介绍NAS(neural architecture serach):神经网络架构搜索,它的目标就是找到一种能够达到最好的验证准确率的网络架构,input:搜索空间,output:搜索结果拼接起来的神经网络架构(一种有向无环图)。因为NAS的挑战有计算耗时、成本高以及搜索空间过大等问题,所以NAS的评价指标主要就是从计算量(网络参数量)和准确率两个方面考虑。NAS搜索策略random search指的是在候选集(搜素空间)中随机对参数(网络结构)进行组合,得到组合后的神经网络进行训练

2021-12-15 17:12:28 2914

原创 NAS-ReID系列一____ReID和NAS的简单介绍

ReID定义ReID:person re-identification,行人重识别旨在,非重叠视角域多摄像头下进行的行人匹配,确定不同位置的摄像头在不同时刻拍摄到的行人目标是否是同一人。ReID对公共安全和刑侦是非常现实的意义,比如说安防、人员追踪等。但是呢,因为拍摄得到的图像分辨率低、视角变化、姿态变化、光线遮挡等问题,导致ReID的研究受阻。ReID实现过程ReID是一个检索任务,所以首先需要做的就是检测,将摄像头拍摄到的行人图像中的行人用方框框出来,并进行标注,得到数据集(在具体的数据集中

2021-12-14 23:55:27 2464 3

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除