c语言树数据结构

本文详细介绍了树型结构的概念,包括树的定义、特性、节点关系以及无序树和有序树的区分。重点讲解了二叉树的定义、完全二叉树和满二叉树的特性,并阐述了二叉树的重要性质。此外,还讨论了树的遍历方法,如前序、中序和后序遍历。同时提到了树的基本操作,如搜索、插入等。
摘要由CSDN通过智能技术生成

树型结构是以分支关系定义的层次结构,它是一种重要的非线性结构。
在计算机科学中,树(英语:tree)是一种抽象数据类型(ADT)或是实现这种抽象数据类型的数据结构,用来模拟具有树状结构性质的数据集合。它是由n(n>0)个有限节点组成一个具有层次关系的集合。把它叫做“树”是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。它具有以下的特点:
每个节点都只有有限个子节点或无子节点;
没有父节点的节点称为根节点;
每一个非根节点有且只有一个父节点;
除了根节点外,每个子节点可以分为多个不相交的子树;
树里面没有环路(cycle)
在这里插入图片描述
在这里插入图片描述

可以将树看做是节点后相邻多节点的链表
链表中一个节点只有一个后相邻节点,而树有多个
节点的度:一个节点含有的子树的个数称为该节点的度;
树的度:一棵树中,最大的节点度称为树的度;
叶节点或终端节点:度为零的节点;
非终端节点或分支节点:度不为零的节点;
父亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点;
孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点;
兄弟节点:具有相同父节点的节点互称为兄弟节点;
节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
深度:对于任意节点n,n的深度为从根到n的唯一路径长,根的深度为0;
高度:对于任意节点n,n的高度为从n到一片树叶的最长路径长,所有树叶的高度为0;
堂兄弟节点:父节点在同一层的节点互为堂兄弟;
节点的祖先:从根到该节点所经分支上的所有节点;
子孙:以某节点为根的子树中任一节点都称为该节点的子孙。
森林:由m(m>=0)棵互不相交的树的集合称为森林;
树的种类

树的种类
无序树:树中任意节点的子节点之间没有顺序关系,这种树称为无序树,也称为自由树。
有序树:树中任意节点的子节点之间有顺序关系,这种树称为有序树;
二叉树:每个节点最多含有两个子树的树称为二叉树;
完全二叉树:对于一棵二叉树,假设其深度为d(d>1)。除了第d层外,其它各层的节点数目均已达最大值,且第d层所有节点从左向右连续地紧密排列,这样的二叉树被称为完全二叉树;
二叉树的性质
   二叉树具有以下重要性质:
性质1 二叉树第i层上的结点数目最多为2i-1(i≥1)。
性质2 深度为k的二叉树至多有2k-1个结点(k≥1)。
性质3 在任意一棵二叉树中,若叶子结点(即度为0的结点)的个数为n0,度为1的结点数为n1,度为2的结点数为n2,则no=n2+1。
证明:因为二叉树中所有结点的度数均不大于2,所以结点总数(记为n)应等于0度结点数、1度结点(记为n1)和2度结点数之和:
n=no+n1+n2
由于有n个结点的二叉树总边数为n-1条,于是得:
n-1=0n0+1n1+2*n2
满二叉树和完全二叉树是二叉树的两种特殊情形。

在计算机科学里,树的遍历(也称为树的搜索)是图的遍历的一种,指的是按照某种规则,不重复地访问某种树的所有节点的过程。具体的访问操作可能是检查节点的值、更新节点的值等。不同的遍历方式,其访问节点的顺序是不一样的。以下虽然描述的是二叉树的遍历算法,但它们也适用于其他树形结构。

从二叉树的根节点出发,节点的遍历分为三个主要步骤:对当前节点进行操作(称为“访问”节点)、遍历左边子节点、遍历右边子节点。这三个步骤的先后顺序也是不同遍历方式的根本区别。
由于从给定的某个节点出发,有多个可以前往的下一个节点(树不是线性数据结构),所以在顺序计算(即非并行计算)的情况下,只能推迟对某些节点的访问——即以某种方式保存起来以便稍后再访问。常见的做法是采用栈(LIFO)或队列(FIFO)。由于树本身是一种自我引用(即递归定义)的数据结构,因此很自然也可以用递归方式
遍历方式的命名,源于其访问节点的顺序。最简单的划分:是深度优先(先访问子节点,再访问父节点,最后是第二个子节点)?还是广度优先(先访问第一个子节点,再访问第二个子节点,最后访问父节点)? 深度优先可进一步按照根节点相对于左右子节点的访问先后来划分。如果把左节点和右节点的位置固定不动,那么根节点放在左节点的左边,称为前序(pre-order)、根节点放在左节点和右节点的中间,称为中序(in-order)、根节点放在右节点的右边,称为后序(post-order)。对广度优先而言,遍历没有前序中序后序之分:给定一组已排序的子节点,其“广度优先”的遍历只有一种唯一的结果。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

以下是遵循树的基本操作。
搜索 − 搜索一棵树中的元素
插入 − 插入元素到一棵树中
前序遍历 − 遍历树前序方法
中序遍历 − 遍历树在序方法
后序遍历− 遍历树的后序方法//

“新插入的结点一定是一个新添加的叶子结点”

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值