- 作者:邹祁峰
- 邮箱:Qifeng.zou.job@hotmail.com
- 博客:http://blog.csdn.net/qifengzou
- 日期:2013.12.13 17:00
- 转载请注明来自"祁峰"的CSDN博客
1 引言
在构造二叉排序树过程中,即使输入相同的关键字组合,但关键字顺序不一致时,产生的也不是不同形态的二叉排序树,其插入、查找、删除的性能差别很大(图1所示),如:
①、当组成的二叉排序树的形态为单分支树时,其平均查找时间为(N+1)/2,最差查找时间为N.
②、当组成的二叉排序树的形态为平衡二叉树时,其插入、删除、平均查找、最差查找时间均为log2@N[以2为底数,以N为对数].
大家可以通过以下图形对时间变化的趋势有一个大概的印象:
图1 变化趋势对比图
由图的变化趋势可知,当N逐渐增大时,时间相差的倍数越来越大[如:当N=2^32时,y = N/2 = 2^31,而y = log2@N = 2^5, 其性能差异可想而知]。因此,为了提高对二叉排序树的操作性能,很有必要在构造二叉树排序树时,进行平衡化处理,将其调整为一棵平衡二叉树。
2 平衡过程
平衡二叉树[Balanced Binary Tree]又称为AVL树,是二叉排序树的一种形式,其特点是:树中每个结点的左、右子树的深度之差的绝对值不超过1,即:|Hl - Hr| <= 1。
结点的平衡因子[Balance factor]:该结点的左子树深度Hl减去该结点的右子树的深度Hr。平衡二叉树所有结点的平衡因子的值只能为-1,0,1。
在构建平衡二叉树的过程中,插入一个新结点后,可能会造成平衡二叉树失去平衡。失去平衡后进行调整的规律可归纳为以下4种情况:[注:以下操作是平衡处理的核心,请认真分析总结]
2.1 LL型
当结点A的平衡因子为2(失衡),且其左子结点B的平衡因子为1时,则可判定为LL型失衡!
失衡场景:
新结点x插在左重结点A[A是离插入新结点x位置最近的左重结点]的左孩子的左分支上,造成结点A失衡,如下图所示:[注:AR表示结点A的右子树,BL表示结点B的左子树,BR表示结点B的右子树]
图2 LL型
平衡过程:(如图3所示)
①、BA向右旋转90度:结点B替换结点A的位置
②、结点B的右孩子BR改为结点A的左孩子,把结点A作为结点B的右孩子
图3 LL型平衡结果
2.2 LR型
当结点A的平衡因子为2,且其左孩子结点B的平衡因子为-1时,则可判断为LR型 - 但C的平衡因子有2种情况:-1, 1。
失衡场景:结点C的平衡因子为1时
新结点x插在左重结点A[A是离插入新结点x位置最近的左重结点]的左孩子的右孩子的左分支上,如下图所示:
图4 LR型
平衡过程:(如图5、6所示)
①、将CB向左旋转90度,把C的左孩子CL作为B的右孩子,再将B作为C的左孩子,C替代B的位置
图5 LR型平衡-左旋
②、将BCA向右旋转90度,把C的右孩子CR作为A的左孩子,将A作为C的右孩子,C替代A的位置
图6 LR型平衡-右旋
2.3 RR型
当结点A的平衡因子为-2,且其左子结点B的平衡因子为-1时,则可判断为RR型。
失衡描述:
新结点x插在右重结点A[A是离插入新结点x位置最近的右重结点]的右孩子的右分支上,如下图所示:
图7 RR型
平衡过程:(如图3所示)
①、AB向左旋转90度:结点B替换结点A的位置
②、把B的左孩子BR改为A的右孩子,把A作为B的左孩子
图8 RR型平衡结果-左旋
2.4 RL型
当结点A的平衡因子为-2,且其右孩子结点B的平衡因子为1时,则可判断为RL型 - 但C的平衡因子有2种情况:-1, 1。
失衡描述①:结点C的平衡因子为-1时
新结点x插在左重结点A[A是离插入新结点x位置最近的右重结点]的右孩子的左孩子的右分支上,如下图所示:
图9 RL型
平衡过程:(如图10、11所示)
①、将CB向右旋转90度:结点C替代结点B的位置,再把结点C的右孩子CR作为B的左孩子,再将B作为C的右孩子
图10 RL型平衡-右旋
②、将BCA向左旋转90度:结点C替代结点A的位置,把C的左孩子CL作为A的右孩子,将A作为C的左孩子
图11 RL型平衡结果-左旋
3 操作接口
3.1 结构定义
->1 结点结构定义
/* 结点结构 */typedef struct _avl_node_t{
struct _avl_node_t *parent; /* 父结点 */ struct _avl_node_t *lchild; /* 左孩子 */ struct _avl_node_t *rchild; /* 右孩子 */ int key; /* 结点值: 如果想构造成通用的平衡二叉树,在此可使用void *类型 */ int bf; /* 平衡因子 */}avl_node_t;
代码1 结点结构
->2 树结构定义
/* 树结构 */typedef struct{
node_t *root; /* 根结点 */ /* 如果想构造成通用的平衡二叉树,可以在此增加一个比较函数指针,其类型为: typedef int (*cmp)(const void *s1, const void *s2) 1. 当s1 < s2时: 返回值小于0 2. 当s1 == s2时: 返回值等于0 3. 当s1 > s2时: 返回值大于0 */}avl_tree_t;
代码2 平衡二叉树结构
->3 错误码:可根据实际情况动态扩展
typedef enum{ AVL_SUCCESS /* 成功 */ , AVL_FAILED = ~0x7FFFFFFF /* 失败 */ , AVL_NODE_EXIST /* 结点存在 */ , AVL_ERR_STACK /* 栈异常 */}AVL_RET_e;
代码3 返回值定义
->4 其他定义:
/* 平衡因子 */#define AVL_RH (-1) /* 右高 */#deifne AVL_EH (0) /* 等高 */#define AVL_LH (1) /* 左高 */#define AVL_MAX_DEPTH (512) /* AVL栈的最大深度 *//* BOOL类型 */typedef int bool;#define true (1)#define false (0)/* 设置node的