用python爬取影评及影片信息(评论时间、用户ID、评论内容)

爬虫入门:python爬取某瓣影评及影片信息:影片评分、评论时间、用户ID、评论内容

某瓣网作为比较官方的电影评价网站,有很多对新上映影片的评价,不多说,直接进入正题。
因为版权问题不让放图片

思路分析

爬取的目标网站为某瓣网。可以看到最新上映的电影的相关信息,但是含有电影评论的网址是一个二级链接,需要点击电影进入详细信息才可以查看,所以第一步需要获得影片的链接。观察后可以看到链接如下:
二级网址链接形式
使用BeautifulSoup和正则表达式re库可以解析这个网站所在的class以及确定具体链接所在的位置,具体方式如下:

bs = BeautifulSoup(html.text,'html.parser')
movie_list = bs.find_all(class_='item')
#定位链接元素
links = re.compile('class="nbg" href="(.*?)" title=')
links = re.findall(links,str(movie_list))

可以在控制台看到是否查询成功,得到的结果如下:

['https://movie.douban.com/subject/35118954/', 'https://movie.douban.com/subject/35414623/', 'https://movie.douban.com/subject/35230876/', 'https://movie.douban.com/subject/34477861/', 'https://movie.douban.com/subject/35507172/', 'https://movie.douban.com/subject/35700395/', 'https://movie.douban.com/subject/30362175/', 'https://movie.douban.com/subject/35240235/', 'https://movie.douban.com/subject/35073886/', 'https://movie.douban.com/subject/35056243/']在这里插入代码片

拿到这些链接之后,在分别请求这些链接,分析页面,就可以拿到最后所需要的数据。

for item in links:
	#TODO 解析页面 定位元素
	...
	pass

元素定位

分析页面 得到各个所需的信息所在位置 综合使用re和BeautifulSoup定位即可 以用户ID为例:(因为这里有短评和长评两种,所以分开查询)

 #用户名称
    user = comment.find_all(class_ = 'comment-info')
    user = re.findall('href.*?/">(.*?)</a>',str(user))
    subscriber = re.findall('class="name".*?href.*?/">(.*?)</a>',str(long_comment))
    #print(subscriber) 打印用户名称信息
    #['CydenyLau', '斯宾诺莎画板', 'Zion', '莫选好片', '小小X', '今夜', 'Maggie_in_LA', 'Gary', '辉兔的爱与生活', '职业影迷']

这里有一个小tips:查找元素的时候要由大到小查询,先查询大的包含的元素,在慢慢锁定自己需要的内容、有用的信息。理论上来说是可以直接用re精确定位到自己所需要的元素 但是这样定位的精度低、错误率高,不建议使用。

完整代码

完整代码如下,复制就可以直接使用,最后使用Dataframe存储数据,也可以保存到本地:

import requests
import re
from bs4 import BeautifulSoup
import pandas as pd

url = 'https://movie.douban.com/chart'
#headers是将爬虫脚本伪装为浏览器请求 如果没有浏览器headers 请求结果是空的 所以一定要加headers
headers = {
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/105.0.0.0 Safari/537.36'
}
html = requests.get( url , headers = headers)
bs = BeautifulSoup(html.text,'html.parser')
movie_list = bs.find_all(class_='item')
#定位链接元素
links = re.compile('class="nbg" href="(.*?)" title=')
links = re.findall(links,str(movie_list))


#为代码整洁 减少冗余代码 
def collection_data(pakeage = None ,data = None):
    for item in data:
        item.replace(" " ,'')
        pakeage.append(item)
    return pakeage
#声明容器
movies_title,release_date,movies_rate,comment_user,movie_comment,comment_postline= [],[],[],[],[],[]
#通过链接找到新的页面
for item in links:
    page = requests.get(item,headers=headers)
    page = BeautifulSoup(page.text,'html.parser')

    #标题
    title = page.find_all(id = 'content' )
    set_title = re.compile('property="v:itemreviewed">(.*?)</span>')
    title = re.findall(set_title,str(title))
    #年份
    year = page.find_all(class_ = 'year')
    year = re.findall(">(.*?)</span>",str(year))
    
    #评分
    rate = page.find_all(class_ = 'll rating_num')
    rate = re.findall('"v:average">(.*?)</strong>',str(rate))

    #短评信息
    comment = page.find_all(class_="comment")
    comment = BeautifulSoup(str(comment),'html.parser')
    #发表时间
    postline = comment.find_all(class_= 'comment-time')
    postline = re.findall('title="(.*?)"',str(postline))
    #评论内容
    short_commentary = comment.find_all(class_ = 'comment-content')
    short_commentary = re.findall('"short">(.*?)</span>',str(short_commentary))
    #用户名称
    user = comment.find_all(class_ = 'comment-info')
    user = re.findall('href.*?/">(.*?)</a>',str(user))
    
    #正常影评
    long_comment = page.find_all(class_ = 'main review-item' )
    #用户
    subscriber = re.findall('class="name".*?href.*?/">(.*?)</a>',str(long_comment))
    #评论发表时间
    long_comment = BeautifulSoup(str(long_comment),'html.parser')
    set_time = re.compile('main-meta".*?">(.*?)</span>')
    posttime = re.findall(set_time,str(long_comment))
    #
    commentary = long_comment.find_all(class_ = 'short-content' )
    set_comment = re.compile('"short-content">(.*?)\(<a.*?</a>',re.S)
    commentary = re.findall(set_comment,str(commentary))
    
    comment_user = collection_data(comment_user,user)
    comment_user = collection_data(comment_user,subscriber)

    movie_comment = collection_data(movie_comment,short_commentary)
    movie_comment = collection_data(movie_comment,commentary)

    comment_postline = collection_data(comment_postline,postline)
    comment_postline = collection_data(comment_postline,posttime)

    for i in range(len(comment_postline)):
        movies_title = collection_data(movies_title,title)
        release_date = collection_data(release_date,year)
        movies_rate = collection_data(movies_rate,rate)
    #鉴于之前保存到本地会报错 这里直接用print方法打印出来
    print(movies_title)
    print(release_date)
    print(movies_rate)
    print(comment_postline)


dataframe = pd.DataFrame({
    "title":movies_title,
    "release_date":release_date,
    "rate":movies_rate,
})
#保存信息到本地
dataframe.to_csv("本地路径",encoding = 'gbk')

如果对本文有任何疑问 欢迎讨论交流!点个赞再走哦!

使用Python爬取京东(JD)商品评论可以通过以下步骤实现。假设我们使用`requests`库来发送HTTP请求,`BeautifulSoup`库来解析HTML内容,以及`pandas`库来存储数据。 首先,确保你已经安装了必要的库: ```bash pip install requests beautifulsoup4 pandas ``` 接下来,编写爬虫代码: ```python import requests from bs4 import BeautifulSoup import pandas as pd import time # 设置请求头,模拟浏览器行为 headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36' } # 商品评论的URL,这里以一个示例URL为例 url = 'https://sclub.jd.com/comment/productPageComments.action?productId=商品ID&page=0&pageSize=10&sortType=5&score=0&flag=1&channel=1&pageSize=10&callback=fetchJSON_comment98vv1234' # 存储评论数据的列表 comments = [] # 发送请求并解析响应 for page in range(10): # 假设爬取前10页评论 params = { 'productId': '商品ID', 'page': page, 'pageSize': 10, 'sortType': 5, 'score': 0, 'flag': 1, 'channel': 1, 'pageSize': 10, 'callback': 'fetchJSON_comment98vv1234' } response = requests.get(url, headers=headers, params=params) response_text = response.text.replace('fetchJSON_comment98vv1234(', '')[:-2] # 去除回调函数名 data = response.json() for comment in data['comments']: user_nickname = comment['nickname'] content = comment['content'] score = comment['score'] creation_time = comment['creationTime'] user_province = comment['userProvince'] comments.append({ '用户昵称': user_nickname, '评论内容': content, '评分': score, '发布时间': creation_time, '位置': user_province }) time.sleep(1) # 暂停1秒,避免被封IP # 将数据存储到DataFrame中 df = pd.DataFrame(comments) # 保存到CSV文件 df.to_csv('jd_comments.csv', index=False, encoding='utf-8-sig') print("爬取完成,数据已保存到jd_comments.csv") ``` ### 说明: 1. **请求头**:为了模拟浏览器行为,设置了一个常见的`User-Agent`。 2. **URL和参数**:URL和参数需要根据实际情况调整,特别是`productId`。 3. **解析响应**:使用`response.json()`解析JSON数据。 4. **数据存储**:将评论数据存储到列表中,最终转换为`pandas`的`DataFrame`,并保存为CSV文件。 ### 注意事项: - **反爬虫机制**:京东可能有反爬虫机制,建议设置合理的请求间隔时间。 - **合法性和道德性**:确保爬取数据的行为符合相关法律法规和网站的使用条款。
评论 67
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值