题目: 骑马修栅栏
描述:农民John每年有很多栅栏要修理。他总是骑着马穿过每一个栅栏并修复它破损的地方。
John是一个与其他农民一样懒的人。他讨厌骑马,因此从来不两次经过一个一个栅栏。你必须编一个程序,读入栅栏网络的描述,并计算出一条修栅栏的路径,使每个栅栏都恰好被经过一次。John能从任何一个顶点(即两个栅栏的交点)开始骑马,在任意一个顶点结束。
每一个栅栏连接两个顶点,顶点用1到500标号(虽然有的农场并没有500个顶点)。一个顶点上可连接任意多(≥1)个栅栏。所有栅栏都是连通的(也就是你可以从任意一个栅栏到达另外的所有栅栏)。
你的程序必须输出骑马的路径(用路上依次经过的顶点号码表示)。我们如果把输出的路径看成是一个500进制的数,那么当存在多组解的情况下,输出500进制表示法中最小的一个 (也就是输出第一个数较小的,如果还有多组解,输出第二个数较小的,等等)。 输入数据保证至少有一个解。
输入格式:第1行:一个整数F(1≤F≤1024),表示栅栏的数目; 第2到F+1行:每行两个整数i,j(1≤=i,j≤500)表示这条栅栏连接i与j号顶点。
输出格式:输出应当有F+1行,每行一个整数,依次表示路径经过的顶点号。注意数据可能有多组解,但是只有上面题目要求的那一组解是认为正确的。
输入样例:
9
1 2
2 3
3 4
4 2
4 5
2 5
5 6
5 7
4 6
输出样例:
1
2
3
4
2
5
4
6
5
7
#include <stdio.h>
int n=500,m;
int g[2000][2000];
int ans[2000],cnt=0;
int d[2000];
void dfs(int u)
{
for(int i=1;i<=n;i++)
if (g[u][i])
{
g[u][i]--,g[i][u]--;//如果u到i有边,将遍历过的边去除,继续从i深度优先遍历
dfs(i);
}
ans[++cnt]=u;//从第一个进入递归的点开始遍历完所有点后,倒序存入ans数组
}
int main()
{
int m;
scanf("%d",&m);
while(m--)
{
int a,b;
scanf("%d %d",&a,&b);
g[a][b]++,g[b][a]++;//令邻接矩阵有边的两个顶点间置1,表示有边
d[a]++,d[b]++;//记录每个点的度数
}
int start=1;
for(int i=1;i<=n;i++)
if (d[i]%2)//找到度数为奇数的第一个点存到start
{
start=i;
break;
}
dfs(start);//从第一个度数为奇数的点开始遍历
for(int i=cnt;i>=1;i--)//倒序输出
printf("%d\n",ans[i]);
return 0;
}