假设检验基本知识

假设检验

显著水平

一个概率值:原假设为真时,拒绝原假设的概率,表示为alpha,常用取值为0.01,0.05,0.10
例子:公司招聘200人,但公司只希望只有5%的人是浑水摸鱼进来的,即4人,而这个5%就是显著性水平alpha

假设检验的步骤

  1. 提出假设
  2. 确定适当的检验统计量
  3. 规定显著性水平
  4. 计算检验统计量的值
  5. 做出统计决策

原假设和备择假设

  • 待检验的假设又叫原假设(零假设)H0。(原假设一般为没有差异、没有变化)
  • 与原假设对比的假设叫做备择假设H1
  • 一般的比较:等于、大于、小于

检验统计量

  • 计算检验的统计量
  • 根据给定的显著性水平,查表得出相应的临界值
  • 将检验统计量的值与显著性水平的临界值进行比较
  • 得出拒绝和不拒绝原假设的结论

检验中常说的小概率

  • 在一次试验中,一个几乎不可能发生的事件发生的概率
  • 在一次试验中小概率事件一旦发生,我们就有理由拒绝原假设
  • 小概率有我们事先确定

P值

  • 如果原假设是真,P值是抽样分布中大于或小于样本统计量的概率

  • 左侧检验,拒绝域在左侧,当P值小于拒绝域的临界值时,拒绝原假设,当P值大于拒绝域的临界值时,接受原假设。关键词:不得少于/低于,例如灯泡的使用寿命不得少于/低于700小时

  • 右侧检验,拒绝域在右侧,当P值大于拒绝域的临界值时,拒绝原假设,当P值小于拒绝域的临界值时,接受原假设。关键词:不得多于/高于,例如次品率不得多于/高于5%时
    在这里插入图片描述

  • 双侧检验,关键词:等于
    在这里插入图片描述

单侧检验指按分布的一侧计算显著性水平概率的检验。用于检验大于、小于、高于、低于、优于、劣于等有确定性大小关系的假设性检验问题。这类问题的确定是有一定的理论依据。假设检验写作 μ 1 < μ 2 \mu1 < \mu2 μ1<μ2 μ 1 > μ 2 \mu1 > \mu2 μ1>μ2
双侧检验指按分布两端计算显著性水平概率的检验,应用于理论上不能确定两个总体一个一定比另一个大或小的假设检验。一般假设检验写作H1: μ 1 ! = μ 2 \mu1 != \mu2 μ1!=μ2

例如,某种零件的尺寸,要求其平均长度为10cm,大于或小于10cm均属于不合格,我们想要证明(检验)大于或小于这两种可能性中的任何一种是否成立,建立的原基社和备择假设是:

总体均值检验

大n>30
小n<30
总体sigma是否已知-
Z检验
样本容量n
用样本标准差S代替
T检验
Z检验

Z检验

Z检验计算公式

如果检验一个样本平均数与一个已知的总体平均数的差异是否显著,其Z值的计算公式为:

z = X ‾ − μ σ X ‾ = X ‾ − μ σ / n z = \frac{\overline{X}-\mu}{\sigma_{\overline{X}}}=\frac{\overline{X}-\mu}{\sigma/\sqrt{n}} z=σXXμ=σ/n Xμ

如果检验来自两个的两组样本平均数的差异性,从而判断它们各自代表的总体的差异是否显著,则Z值的计算公式为:

Z = X 1 ‾ − X 2 ‾ S X 1 ‾ − X 2 ‾ = X 1 ‾ − X 2 ‾ S 1 2 / n 1 + S 2 2 / n 2 Z = \frac{\overline{X_1} - \overline{X_2}}{S_{\overline{X_1} - \overline{X_2}}} = \frac{\overline{X_1} - \overline{X_2}}{\sqrt{S_1^2/n_1 + S_2^2/n_2}} Z=SX1X2X1X2=S12/n1+S22/n2 X1X2

Z检验原理

当总体标准差已知,样本量较大时用标准正态分布的理论来推断差异发生的概率,从而比较两个平均数的差异是否显著
标准正态变换后Z的界值
双侧: z 0.05 / 2 = 1.96 , z 0.01 / 2 = 2.58 z_{0.05/2}=1.96,z_{0.01/2}=2.58 z0.05/2=1.96,z0.01/2=2.58
单侧: z 0 . 05 = 1.645 , z 0 . 01 = 2.33 z_0.05=1.645,z_0.01=2.33 z0.05=1.645,z0.01=2.33

Z检验实例

例子1

研究正常人与高血压患者胆固醇含量(mg%)的资料如下,试比较两组血清胆固醇含量有无差异。
正常人组: n 1 = 506 , X 1 ‾ = 180.6 , S 1 = 34.2 n_1=506,\overline{X_1}=180.6,S_1=34.2 n1=506,X1=180.6,S1=34.2
高血压组: n 2 = 142 , X 2 ‾ = 223.6 , S 2 = 45.8 n_2=142,\overline{X_2}=223.6,S_2=45.8 n2=142,X2=223.6,S2=45.8

建立检验假设,确定检验水平
H 0 : μ 1 = μ 2 H_0:\mu_1 = \mu_2 H0:μ1=μ2
H 1 : μ 1 ≠ μ 2 H_1:\mu_1 \neq \mu_2 H1:μ1=μ2
α = 0.05 \alpha=0.05 α=0.05
计算统计量Z值
Z = ∣ 180.6 − 223.6 ∣ 34. 2 2 / 506 + 45. 8 2 / 142 Z = \frac{|180.6-223.6|}{\sqrt{34.2^2/506+45.8^2/142}} Z=34.22/506+45.82/142 180.6223.6
确定P值,作出推断结论,本例Z=10.40>1.96(查表0.975对应值),故P<0.05,按alpha=0.05水准拒绝H_0,接受H_1,可以认为正常人与高血压患者的血清胆固醇含量有差别,高血压患者高于正常人

例子2

某机床厂加工一种零件,根据经验知道,该厂加工零件的椭圆度近似正态分布,其总体均值为mu=0.081mm,总体标准差为sigma=0.025。今换一种新机床进行加工,抽取n=200个零件进行检验,得到的椭圆度为0.076mm。试问新机床加工零件的椭圆度的均值与以前有无显著差异?

H 0 : μ = 0.081 , H 1 : μ ≠ 0.081 H_0:\mu = 0.081,H_1:\mu \neq 0.081 H0:μ=0.081,H1:μ=0.081
α = 0.05 , n = 200 \alpha=0.05,n=200 α=0.05,n=200
检验统计量:
z = x ‾ − μ 0 σ / n = 0.076 − 0.081 0.025 / 200 = − 2.83 z=\frac{\overline{x}-\mu_0}{\sigma/\sqrt{n}}=\frac{0.076-0.081}{0.025/\sqrt{200}}=-2.83 z=σ/n xμ0=0.025/200 0.0760.081=2.83
决策:在alpha=0.05的水平上拒绝H0
结论:有证据表明新机床加工的零件的椭圆度与以前有显著差异

例子3

根据过去大量资料,某工厂生产的灯泡的使用寿命服从正态分布N~(1020,100^2)。现从最近生产的一批产品中随机抽取16只,测得样本平均寿命为1080小时。试在0.05的显著水平下判断这批产品的使用寿命是否有显著提高?

H 0 : μ ≤ 1020 , H 1 : μ > 1020 H_0:\mu \leq 1020,H_1:\mu>1020 H0:μ1020,H1:μ>1020
α = 0.05 , n = 16 \alpha=0.05,n=16 α=0.05,n=16
统计检验量:
z = x ‾ − μ 0 σ / n = 1080 − 1020 100 / s q r t 14 = 2.4 z=\frac{\overline{x}-\mu_0}{\sigma/\sqrt{n}}=\frac{1080-1020}{100/sqrt{14}}=2.4 z=σ/n xμ0=100/sqrt1410801020=2.4
决策:在alpha=0.05的水平上拒绝H0
结论:有证据表明这批灯泡的使用寿命有显著提高

T检验

根据研究设计,t检验有三种形式

单个样本的t检验:
用来比较一组数据的平均值和一个数值有无差异。例如:你选取了5个人,测定了他们的身高,要看这5个人的身高平均值是否高于、低于还是等于1.7米,就需要用这个检验方法。

配对样本均数T检验(非独立两样本均数t检验 ):
用来看一组样本在处理前后的平均值有无差异。比如,你选取了五个人,分别在饭前和饭后测量了他们的体重,想测量吃饭对他们的体重有无影响,就需要用这个t体检。

两个独立样本均数t体检:
用来看两组数据的平均值有无差异。比如,你选取了5男5女,想看男女之间身高有无差异。这样,男的一组,女的一组,这两个组之间的身高平均值的大小比较可以用这个方法。

单个样本t检验

又称单样本均数t检验,也适用于样本均数与已知总体均数mu0的比较,目的是检验样本均数所代表的总体均数mu是否与已知总体均数mu0有差别。
已知总体均数mu0一般为标准值、理论值或经大量观察得到的较稳定的指标值。
应用条件,总体标准为alpha未知的小样本资料,且服从正态分布。

例子

以往通过大规模调查,已知某地新生儿出生体重为3.30kg,从该地难产儿中随机抽取35名新生儿,平均出生体重为3.42kg,标准差为0.40kg,问该地难产儿出生体重是否与一般新生儿体重不同。

建立检验假设,确认检验水准:
H 0 : μ = μ 0 , H 1 : μ ≠ μ 0 , α = 0.05 H_0:\mu=\mu_0,H_1:\mu \neq \mu_0,\alpha=0.05 H0:μ=μ0,H1:μ=μ0,α=0.05
计算检验统计量:
t = X ‾ − μ 0 S / n = 3.42 − 3.30 0.40 / 35 = 1.77 t = \frac{\overline{X}-\mu_0}{S/\sqrt{n}}=\frac{3.42-3.30}{0.40/\sqrt{35}}=1.77 t=S/n Xμ0=0.40/35 3.423.30=1.77
本例自由度v=n -1=35-1=34,查表得T 0.05/2.34=2.032,因为T<T 0.05/2.34,故P>0.05,按alpha=0.05水准,不拒绝H0,差别无统计学意义,尚不能认为该地难产儿与一般新生儿平均出生体重不同。

匹配样本均数T检验

  • 简称配对T检验,又称非独立两样本均数T检验,适用于配对设计计量资料均数的比较。
  • 配对设计是将受试对象按某些特征相近的原则配对成对子,每对中的两个个体随机的给予两种处理。
配对样本均数T检验原理
  • 配对设计的资料具有对子内数据一一对应的特征,研究者应关心是对子的效应差值,而不是各自的效应值。
  • 进行配对t检验时,首选应计算各对数据间的差值d,将d作为变量计算均数。
  • 配对样本t检验的基本原理是,假设两种处理的效应相同,理论上差值d的总体均数mud为0,现有不等于0差值样本均数可以来自mud=0的总体,也可以来自mud != 0的总体。
  • 可将该检验理解为差值样本均数与已知总体均数mud(mud=0)比较的单样本t检验,其检验统计量为: t = d ‾ − μ d S d ‾ = d ‾ − 0 S d ‾ = d ‾ S d / s q r t n t=\frac{\overline{d}-\mu_d}{S_{\overline{d}}}=\frac{\overline{d}-0}{S_{\overline{d}}}=\frac{\overline{d}}{S_d/sqrt{n}} t=Sddμd=Sdd0=Sd/sqrtnd
实例

有12名接种卡介苗的儿童,8周后用两批不同的结核菌素,一批是标准结核菌素,一批是新制结核菌素,分别注射在儿童的前臂,两个结核菌素的皮肤浸润反应平均直径(mm)如表所示,问两种结核菌素的反应性有无差别?
在这里插入图片描述
建立检验假设,确认检验水准:
H 0 : μ d = 0 , H 1 : μ d ≠ 0 , α = 0.05 H_0:\mu_d=0,H_1:\mu_d \neq 0,\alpha=0.05 H0:μd=0,H1:μd=0,α=0.05
计算检验统计量 ,本例: ∑ d = 39 , ∑ d 2 = 195 \sum{d}=39,\sum{d^2}=195 d=39,d2=195
先计算差数的标准差: s d = ∑ d 2 − ( ∑ d ) 2 n n − 1 = 195 − ( 39 ) 2 12 12 − 1 = 2.4909 s_d=\sqrt{\frac{\sum{d^2}-\frac{(\sum{d})^2}{n}}{n-1}}=\sqrt{\frac{195-\frac{(39)^2}{12}}{12-1}}=2.4909 sd=n1d2n(d)2 =12119512(39)2 =2.4909
计算差值的标准误: s d ‾ = s d n = 2.4909 3.464 = 0.7191 s_{\overline{d}}=\frac{s_d}{\sqrt{n}}=\frac{2.4909}{3.464}=0.7191 sd=n sd=3.4642.4909=0.7191
按公式计算得: t = d ‾ s d ‾ = 3.25 0.7191 = 4.5195 t=\frac{\overline{d}}{s_{\overline{d}}}=\frac{3.25}{0.7191}=4.5195 t=sdd=0.71913.25=4.5195
确定P值,作出推断结论
自由度为v=n-1=12-1=11
查附表,得 t 0.05 / 2.11 = 2.201 t_{0.05/2.11} = 2.201 t0.05/2.11=2.201
本例 t > t 0.05 / 2.11 t> t_{0.05/2.11} t>t0.05/2.11
P<0.05,拒绝H0,接受H1,即反应结果有差别

两独立样本t检验

  • 两独立样本t检验,又称组t检验。
  • 适用于完全随机设计的两样本均数的比较,其目的是检验两样本所来自总体的均数是否相等。
  • 完全随机设计是将受试对象随机的分配到两组中,每组患者分别接受不同的处理,分析比较处理的效应。
  • 两独立样本t检验要求两样本所代表的总体服从正态分布N(mu1,sigma2)和N(mu2,sigma2),且两总体方差sigma2,sigma2相等,即方差齐性,若两总体方差不等需要先进行变换。
两独立样本t检验原理

两独立样本t检验假设是两总体均数相等,即H0:mu1=mu2,也可以表述为mu1-mu2=0,这里可将两样本均数的差值看成一个变量样本,则在H0条件下两独立样本均数t检验可视为样本与已知均数mu1-mu2=0的单样本t检验,统计量计算公式为:
t = ∣ ( X 1 ‾ − X 2 ‾ ) − ( μ 1 − μ 2 = 0 ) ∣ S X 1 ‾ − X 2 ‾ = ∣ X 1 ‾ − X 2 ‾ ∣ S X 1 ‾ − X 2 ‾ , v = n 1 + n 2 − 2 t=\frac{|(\overline{X_1}-\overline{X_2})-(\mu_1-\mu_2=0)|}{S_{\overline{X_1}-\overline{X_2}}}=\frac{|\overline{X_1}-\overline{X_2}|}{S_{\overline{X_1}-\overline{X_2}}},v=n_1+n_2-2 t=SX1X2(X1X2)(μ1μ2=0)=SX1X2X1X2,v=n1+n22
S X 1 ‾ − X 2 ‾ = S c 2 ( 1 n 1 + 1 n 2 ) S_{\overline{X_1}-\overline{X_2}}=\sqrt{S_c^2(\frac{1}{n_1}+\frac{1}{n_2})} SX1X2=Sc2(n11+n21)
S c 2 = ∑ X 1 2 − ( ∑ X 1 ) 2 n 1 + ∑ X 2 2 − ( ∑ X 2 ) 2 n 2 n 1 + n 2 − 2 S_c^2=\frac{\sum{X_1^2}-\frac{(\sum{X_1})^2}{n_1}+\sum{X_2^2}-\frac{(\sum{X_2})^2}{n_2}}{n_1+n_2-2} Sc2=n1+n22X12n1(X1)2+X22n2(X2)2
其中Sc2称为合并方差

实例

25例糖尿病患者随机分成两组,甲组纯用药物治疗,乙组采用药物治疗并饮食疗法,两个月后空腹测血糖,如表所示。问两种疗法治疗患者血糖值是否相同?
在这里插入图片描述
建立检验假设,确认检验水准:
H 0 : μ d = 0 , H 1 : μ d ≠ 0 , α = 0.05 H_0:\mu_d=0,H_1:\mu_d \neq 0,\alpha=0.05 H0:μd=0,H1:μd=0,α=0.05
计算检验统计量 ,由原始数据算得 n 1 = 12 , ∑ X 1 = 182.5 , ∑ X 1 2 = 2953.43 n_1=12,\sum{X_1}=182.5,\sum{X_1^2}=2953.43 n1=12,X1=182.5,X12=2953.43
n 2 = 13 , ∑ X 2 = 141.0 , ∑ X 2 2 = 1743.16 n_2=13,\sum{X_2}=141.0,\sum{X_2^2}=1743.16 n2=13,X2=141.0,X22=1743.16
X 1 ‾ = ∑ X 1 n 1 = 182.5 12 = 15.21 , X 2 ‾ = ∑ X 2 n 2 = 141.6 13 = 10.85 \overline{X_1}=\frac{\sum{X_1}}{n_1}=\frac{182.5}{12}=15.21,\overline{X_2}=\frac{\sum{X_2}}{n_2}=\frac{141.6}{13}=10.85 X1=n1X1=12182.5=15.21,X2=n2X2=13141.6=10.85
代入公式得:
S c 2 = 2953.43 − 182. 5 2 12 + 1743.16 − 141.0 13 12 + 13 − 2 = 17.03 S_c^2=\frac{2953.43-\frac{182.5^2}{12}+1743.16-\frac{141.0}{13}}{12+13-2}=17.03 Sc2=12+1322953.4312182.52+1743.1613141.0=17.03
S X 1 ‾ − X 2 ‾ = 17.03 ( 1 12 + 1 13 ) = 1.652 S_{\overline{X_1}-\overline{X_2}}=\sqrt{17.03(\frac{1}{12}+\frac{1}{13})}=1.652 SX1X2=17.03(121+131) =1.652
t = 15.21 − 10.85 1.652 = 2.639 t=\frac{15.21-10.85}{1.652}=2.639 t=1.65215.2110.85=2.639
v = n 1 + n 2 − 2 = 12 + 13 − 2 = 23 v=n_1+n_2-2=12+13-2=23 v=n1+n22=12+132=23
查t界值表, t 0.05 / 2.23 = 2.069 t_{0.05/2.23}=2.069 t0.05/2.23=2.069
由于 t > t 0.05 / 2.23 t>t_{0.05/2.23} t>t0.05/2.23
有P<0.05,按alpha=0.0的水准,拒绝H0,接受H1,,差异有统计学意义。故认为这两种疗法不同。

T检验应用条件
  • 两组计量资料比较小
  • 样本对总体有较好代表性,对比组间有较好组间均衡性——随机抽样和随机分组
  • 样本来自正态分布总体,配对t检验要求差值服从正态分布,大样本时,用z检验,且正态性要求可以放宽
  • 两独立样本均数t检验要求方差齐性——两组总体方差相等或两样本方差间无显著性

正态性检验和两总体方差的齐性检验

正态性检验

图示法:常用的图示法包括P-P图法和Q-Q图法。图中数据呈直线关系可认为呈正态分布,不呈直线关系可认为呈偏态分布。
偏度检验:主要计算偏度系数,H0:G1 = 0,总体分布对称;H1:G1 !=0,总体分布不对称
在这里插入图片描述
峰度检验:主要计算峰度系数,H0:G2=0,总体分布为正态峰;H1:G2!=0,总体分布不是正态峰
在这里插入图片描述

方差齐性检验

F = S 1 2 ( 较 大 ) S 2 2 ( 较 小 ) , v 1 = n 1 − 1 , v 2 = n 2 − 1 F=\frac{S_1^2(较大)}{S_2^2(较小)},v_1=n_1-1,v_2=n_2-1 F=S22()S12(),v1=n11,v2=n21
式中S12是以为较大的样本方差,S2^2为较小的样本方差,分子的自由度为n1,分母的自由度为n2,相应的样本例数分别为n1和n2。F值是两个样本方差之比,如只是抽样误差的影响,他一般不会离1太远,反之,F值较大,两总体方差相同的可能性较小。F分布就是反应此概率的分布。求得F值后,查附表,F界值表得P值,Falpha,不拒绝H0,可认为两总体方差相等;F>=Falpha/2(v1,v2),则P<=alpha,拒绝H0,可认为两总体方差不等。

实例

由X线胸片上测得两组患者的肺门横径右侧距R1值(cm),计算的结果如下,比较其方差是否齐性
肺癌患者: n 1 = 10 , X 1 ‾ = 6.21 ( c m ) , S 1 = 1.79 ( c m ) n_1=10,\overline{X_1}=6.21(cm),S_1=1.79(cm) n1=10,X1=6.21(cm),S1=1.79(cm)
矽肺患者: n 2 = 50 , X 2 ‾ = 4.34 ( c m ) , S 2 = 0.56 ( c m ) n_2=50,\overline{X_2}=4.34(cm),S_2=0.56(cm) n2=50,X2=4.34(cm),S2=0.56(cm)

建立检验假设,确定检验水准
两总体方差相等:
H 0 : σ 1 2 = σ 2 2 H_0:\sigma_1^2=\sigma_2^2 H0:σ12=σ22
两总体方差不相等:
H 0 : σ 1 2 ≠ σ 2 2 H_0:\sigma_1^2 \neq \sigma_2^2 H0:σ12=σ22
计算F值:
F = 1.7 9 2 0.5 6 2 = 10.22 F=\frac{1.79^2}{0.56^2}=10.22 F=0.5621.792=10.22
确定P值,作出推断结论,本例v1=10-1=9,v2=50-1=49,查附表,F0.10/2=2.80,得P<0.05,按alpha=0.10,拒绝H0,接受H1,故可认为两总体方差不齐。

方差不齐的时候,两小样本均数的比较,可选用以下方法:

  1. 采用近似法t’检验
  2. 采用适当的变量变换,使达到方差齐的要求
  3. 采用秩和检验

卡方检验(chi-square test)

用于检验两个(或多个)率或构成比之间差别是否有统计学意义,配对卡方检验检验配对计数资料的差异是否有统计学意义。

基本思想

检验实际频数A和理论频数T的差别是否是由抽样误差所引起的。也就是由样本率(或样本构成比)来推断总体率或构成比。

实例

两种药物治疗胃溃疡有效率的比较

处理有效无效合计有效率
A药62(56.67)a23(28.33)b85(a+b)72.94(p1)
B药48(53.33)c32(26.67)d80(c+d)60.00(p2)
合计110(a+c)55(b+d)165(n)66.67

其中的计算方式:
A药有效的理论值=8566.67%=56.67
B药有效的理论值=80
66.67%=53.33
自由度=(行数-1)*(列数-1)

理论频数与实际频数的差别

χ 2 = ∑ ( A R C − T R C ) 2 T R C \chi^2=\sum{\frac{(A_{RC}-T_{RC})^2}{T_{RC}}} χ2=TRC(ARCTRC)2
ARC是位于R行C列交叉处的实际频数,TRC是位于R行C列交叉处的理论频数。(ARC-TRC)反映实际频数与理论频数的差距,除以TRC为的是考虑相对差距。所以,chi^2值反应了实际频数与理论频数的吻合程度,chi2值越大,说明实际频数与理论频数的差距越大。chi2值得大小除了与实际频数和理论频数得差得大小有关外,还与他们得行、列数有关。即自由度得大小。

一般的四格表

B1B2合计
A1aba+b
A2cdc+d
合计a+cb+dn=a+b+c+d

四格表专用公式:
χ 2 = ∑ ( A − T ) 2 T = ( a d − b c ) 2 ⋅ n ( a + b ) ( c + d ) ( a + c ) ( b + d ) , v = 1 \chi^2=\sum{\frac{(A-T)^2}{T}}=\frac{(ad-bc)^2·n}{(a+b)(c+d)(a+c)(b+d)},v=1 χ2=T(AT)2=(a+b)(c+d)(a+c)(b+d)(adbc)2n,v=1
若chi2很大,则P值小,当P值小于alpha值,则拒绝H0,接受H1

实例

某药品检验所随机抽取574个成年人,研究抗生素的耐药性。问两种人群的耐药率是否一致?

用药史不敏感敏感合计耐药率(%)
曾服该药18021539545.57
未服该药7310617940.78
合计25332157444.08

则可以推算出理论数

用药史不敏感敏感合计
曾服该药395*45.57%=174.10220.90395
未服该药78.90100.10179
合计253321574

建立检验假设并确定检验水准
耐药性相同,即两总体率相等: H 0 : π 1 = π 2 H_0:\pi_1=\pi_2 H0:π1=π2
耐药性不同,即两总体率不等: H 0 : π 1 ≠ π 2 H_0:\pi_1\neq\pi_2 H0:π1=π2
α = 0.05 \alpha=0.05 α=0.05
计算检验统计量:
χ 2 = ( 180 ∗ − 17410 ) 2 17410 + ( 215 − 22090 ) 2 22090 + . . . + ( 106 − 10010 ) 2 10010 = 23.12 \chi^2=\frac{(180*-17410)^2}{17410}+\frac{(215-22090)^2}{22090}+...+\frac{(106-10010)^2}{10010}=23.12 χ2=17410(18017410)2+22090(21522090)2+...+10010(10610010)2=23.12
得出结果:查表确定P值,得出结论。按0.05水准,不拒绝H0,可以认为两组人群对该抗生素的耐药率的差异无统计学意义。

假设检验中的两类错误

第一类错误:弃真

原假设为真时,拒绝原假设
第一类错误的概率为alpha,此概率为检验所选择的显著性水平。如果是单侧检验,弃真错误的概率则为alpha/2

第二类错误:取伪

原假设为假时,接受原假设
第二类错误的概率为beta,第二类的错误计算较为复杂
在这里插入图片描述
图中阴影部分面积: Z X 1 = 1.41 , Z X 2 = 5.59 ZX_1=1.41,ZX_2=5.59 ZX1=1.41,ZX2=5.59
则此处为
β = Φ ( Z X 2 ) − Φ ( Z X 1 ) = 0.0793 \beta=\Phi(ZX_2)-\Phi(ZX_1)=0.0793 β=Φ(ZX2)Φ(ZX1)=0.0793
所以犯beta错误的概率大小为0.0793

但注意不能同时减小两类错误

  • 3
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值