笔试必刷 leetcode热题 LCR 116. 省份数量

一、问题描述:

有 n 个城市,其中一些彼此相连,另一些没有相连。如果城市 a 与城市 b 直接相连,且城市 b 与城市 c 直接相连,那么城市 a 与城市 c 间接相连。
省份 是一组直接或间接相连的城市,组内不含其他没有相连的城市。
给你一个 n x n 的矩阵 isConnected ,其中 isConnected[i][j] = 1 表示第 i 个城市和第 j 个城市直接相连,而 isConnected[i][j] = 0 表示二者不直接相连。
返回矩阵中 省份 的数量。

二、代码示例:

1、深度优先算法 DFS:

class Solution {
    // 用于标记城市是否被访问过
    boolean[] visited;

    public int findCircleNum(int[][] isConnected) {
        int n = isConnected.length; // 城市的总数量
        int result = 0;  // 记录省份的数量
        visited = new boolean[n];  // 初始化访问数组
        // 遍历每一个城市
        for(int i = 0; i < n; i++){          
            // 如果城市i没有被访问过,说明发现了一个新的省份
            if(visited[i] == false){
                result++; // 省份计数增加
                // 进行深度优先搜索,标记这个省份的所有城市
                dfs(isConnected, visited, i);
            }
        }
        return result;  // 返回省份的总数
    }

    // 深度优先搜索(DFS)用于遍历和标记所有与城市i直接或间接连接的城市
    public void dfs(int[][] isConnected, boolean[] visited, int i){
        int n = isConnected.length;  // 城市的总数量
        // 遍历所有城市,寻找与城市i相连接的城市
        for(int j = 0; j < n; j++){
            // 如果城市i与城市j直接连接且城市j未被访问
            if(isConnected[i][j] == 1 && visited[j] == false){
                visited[j] = true;  // 标记城市j为已访问
                // 递归调用DFS,继续标记城市j所连接的其他城市
                dfs(isConnected, visited, j);
            }           
        }
    }
}

解题思路:

  • 初始化:
    ①创建一个 visited 数组来跟踪哪些城市已经被访问过。
    ②遍历所有城市,若某城市尚未被访问过,则说明发现了一个新的省份。
  • DFS遍历:
    ① 对于每个新发现的省份,调用 DFS 函数从该城市开始遍历。
    ②DFS 函数通过递归标记与当前城市直接或间接连接的所有城市。
  • 计数:每次发现新省份时,增加计数器 result,最终返回省份总数。

时间复杂度:

DFS遍历:每个城市最多被访问一次,每条边最多被检查两次(一次从每个端点)。对于一个包含 n 个城市和 E 条边的图,DFS的时间复杂度是 O(n + E)。所以最坏情况下,城市间完全连接,时间复杂度是 O(n^2)。

空间复杂度:

递归栈空间:DFS的递归栈空间在最坏情况下的深度为 n,即 O(n)。
访问数组:存储 n 个布尔值,空间复杂度为 O(n)。
总空间复杂度:递归栈空间和访问数组的空间复杂度相加,总空间复杂度是 O(n)。

2、广度优先算法 BFS:

class Solution {
    // 用于标记城市是否被访问过
    boolean[] visited;
    public int findCircleNum(int[][] isConnected) {
        int n = isConnected.length; // 城市的总数量
        int result = 0;  // 记录省份的数量
        visited = new boolean[n];  // 初始化访问数组
        // 使用队列实现广度优先搜索
        Queue<Integer> q = new LinkedList<>();
       
        // 遍历每一个城市
        for(int i = 0; i < n; i++){      
            // 如果城市i没有被访问过,说明发现了一个新的省份
            if(visited[i] == false){
                // 将城市i加入队列
                q.offer(i);
                // 省份计数增加
                result++;
                
                // 使用广度优先搜索遍历这个省份
                while(!q.isEmpty()){
                    // 从队列中取出一个城市
                    int x = q.poll();
                    // 遍历所有城市,寻找与城市x直接连接的城市
                    for(int y = 0; y < n; y++){
                        // 如果城市x与城市y直接连接且城市y未被访问
                        if(isConnected[x][y] == 1 && visited[y] == false){
                            // 标记城市y为已访问
                            visited[y] = true;
                            // 将城市y加入队列
                            q.offer(y);
                        }    
                    }
                }
            }
        }
        return result;  // 返回省份的总数
    }
}

解题思路:

  • 初始化:visited 数组用于标记每个城市是否已被访问。使用 Queue 实现广度优先搜索,队列用于存储待访问的城市。
  • 遍历城市:
    ①对于每个未访问的城市,执行以下操作:
    ②将该城市加入队列,并将省份计数 result 增加。
    ③进行广度优先搜索(BFS),从队列中取出城市,检查其相邻城市。如果相邻城市未被访问,则标记为已访问,并将其加入队列。
  • 返回结果:返回省份的总数 result。

时间复杂度:

BFS遍历:每个城市(节点)最多被访问一次。
每条边(连接)最多被检查两次(一次从每个端点)。对于一个包含 n 个城市和 E 条边的图,BFS的时间复杂度是 O(n + E)。
在最坏情况下,时间复杂度是 O(n^2)。

空间复杂度:

队列空间:队列用于存储当前层的城市。最坏情况下队列的最大空间复杂度是 O(n),当所有城市都属于同一个省份时。
访问数组:用于标记城市是否被访问过,空间复杂度是 O(n)。
总空间复杂度:队列和访问数组的空间复杂度相加,总空间复杂度是 O(n)。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值