一、问题描述:
有 n 个城市,其中一些彼此相连,另一些没有相连。如果城市 a 与城市 b 直接相连,且城市 b 与城市 c 直接相连,那么城市 a 与城市 c 间接相连。
省份 是一组直接或间接相连的城市,组内不含其他没有相连的城市。
给你一个 n x n 的矩阵 isConnected ,其中 isConnected[i][j] = 1 表示第 i 个城市和第 j 个城市直接相连,而 isConnected[i][j] = 0 表示二者不直接相连。
返回矩阵中 省份 的数量。
二、代码示例:
1、深度优先算法 DFS:
class Solution {
// 用于标记城市是否被访问过
boolean[] visited;
public int findCircleNum(int[][] isConnected) {
int n = isConnected.length; // 城市的总数量
int result = 0; // 记录省份的数量
visited = new boolean[n]; // 初始化访问数组
// 遍历每一个城市
for(int i = 0; i < n; i++){
// 如果城市i没有被访问过,说明发现了一个新的省份
if(visited[i] == false){
result++; // 省份计数增加
// 进行深度优先搜索,标记这个省份的所有城市
dfs(isConnected, visited, i);
}
}
return result; // 返回省份的总数
}
// 深度优先搜索(DFS)用于遍历和标记所有与城市i直接或间接连接的城市
public void dfs(int[][] isConnected, boolean[] visited, int i){
int n = isConnected.length; // 城市的总数量
// 遍历所有城市,寻找与城市i相连接的城市
for(int j = 0; j < n; j++){
// 如果城市i与城市j直接连接且城市j未被访问
if(isConnected[i][j] == 1 && visited[j] == false){
visited[j] = true; // 标记城市j为已访问
// 递归调用DFS,继续标记城市j所连接的其他城市
dfs(isConnected, visited, j);
}
}
}
}
解题思路:
- 初始化:
①创建一个 visited 数组来跟踪哪些城市已经被访问过。
②遍历所有城市,若某城市尚未被访问过,则说明发现了一个新的省份。 - DFS遍历:
① 对于每个新发现的省份,调用 DFS 函数从该城市开始遍历。
②DFS 函数通过递归标记与当前城市直接或间接连接的所有城市。 - 计数:每次发现新省份时,增加计数器 result,最终返回省份总数。
时间复杂度:
DFS遍历:每个城市最多被访问一次,每条边最多被检查两次(一次从每个端点)。对于一个包含 n 个城市和 E 条边的图,DFS的时间复杂度是 O(n + E)。所以最坏情况下,城市间完全连接,时间复杂度是 O(n^2)。
空间复杂度:
递归栈空间:DFS的递归栈空间在最坏情况下的深度为 n,即 O(n)。
访问数组:存储 n 个布尔值,空间复杂度为 O(n)。
总空间复杂度:递归栈空间和访问数组的空间复杂度相加,总空间复杂度是 O(n)。
2、广度优先算法 BFS:
class Solution {
// 用于标记城市是否被访问过
boolean[] visited;
public int findCircleNum(int[][] isConnected) {
int n = isConnected.length; // 城市的总数量
int result = 0; // 记录省份的数量
visited = new boolean[n]; // 初始化访问数组
// 使用队列实现广度优先搜索
Queue<Integer> q = new LinkedList<>();
// 遍历每一个城市
for(int i = 0; i < n; i++){
// 如果城市i没有被访问过,说明发现了一个新的省份
if(visited[i] == false){
// 将城市i加入队列
q.offer(i);
// 省份计数增加
result++;
// 使用广度优先搜索遍历这个省份
while(!q.isEmpty()){
// 从队列中取出一个城市
int x = q.poll();
// 遍历所有城市,寻找与城市x直接连接的城市
for(int y = 0; y < n; y++){
// 如果城市x与城市y直接连接且城市y未被访问
if(isConnected[x][y] == 1 && visited[y] == false){
// 标记城市y为已访问
visited[y] = true;
// 将城市y加入队列
q.offer(y);
}
}
}
}
}
return result; // 返回省份的总数
}
}
解题思路:
- 初始化:visited 数组用于标记每个城市是否已被访问。使用 Queue 实现广度优先搜索,队列用于存储待访问的城市。
- 遍历城市:
①对于每个未访问的城市,执行以下操作:
②将该城市加入队列,并将省份计数 result 增加。
③进行广度优先搜索(BFS),从队列中取出城市,检查其相邻城市。如果相邻城市未被访问,则标记为已访问,并将其加入队列。 - 返回结果:返回省份的总数 result。
时间复杂度:
BFS遍历:每个城市(节点)最多被访问一次。
每条边(连接)最多被检查两次(一次从每个端点)。对于一个包含 n 个城市和 E 条边的图,BFS的时间复杂度是 O(n + E)。
在最坏情况下,时间复杂度是 O(n^2)。
空间复杂度:
队列空间:队列用于存储当前层的城市。最坏情况下队列的最大空间复杂度是 O(n),当所有城市都属于同一个省份时。
访问数组:用于标记城市是否被访问过,空间复杂度是 O(n)。
总空间复杂度:队列和访问数组的空间复杂度相加,总空间复杂度是 O(n)。