ML
文章平均质量分 67
有害诗篇
改变未来的不是AI,而是爱
展开
-
常见特征工程操作
过滤式(filter)先对数据进行特征选择,然后在训练学习器,常见的方法有Relief/方差选择发/相关系数法/卡方检验法/互信息法;嵌入式(embedding)结合过滤式和包裹式,学习器训练过程中自动进行了特征选择,常见的有lasso回归;插值补全,包括均值/中位数/众数/建模预测/多重插补/压缩感知补全/矩阵补全等;时间特征,包括相对时间和绝对时间,节假日,双休日等;非线性变换,包括log/平方/根号等;2.BOX-COX转换(处理有偏分布);地理信息,包括分箱,分布编码等方法;...原创 2022-07-27 10:34:25 · 408 阅读 · 0 评论 -
sklearn模型整理
sklearn 模型总结原创 2022-07-04 16:03:47 · 1166 阅读 · 0 评论 -
kaggle树叶分类
kaggle比赛地址:leaf-classification数据集形式:train_csv:对于每一张图片都有192个特征。test.csv没有species这一列,该比赛的目标就是预测这一列,判断属于哪一类。训练集共有990张,测试集共有594张,共99类图片如下所示:机器学习方法:#对数据进行标签编码le = LabelEncoder().fit(train.species)labels = le.transform(train.species)labels将数据标签进行编原创 2022-05-09 16:19:22 · 993 阅读 · 0 评论 -
keras:图片预处理
图片处理器ImageDataGeneratorkeras.preprocessing.image.ImageDataGenerator(featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=0., width_shift_range原创 2022-05-09 15:52:39 · 459 阅读 · 0 评论 -
图像检测:图像预处理
主要内容图像显示与存储原理图像增强的目标点运算:基于直方图的对比度增强形态学处理空间域处理:卷积卷积的应用(平滑,边缘检测,锐化等)频率域处理:傅里叶变换,小波变换应用案例:平滑,边缘检测,CLAHE等颜色空间RGB颜色空间加法混色,彩色显示器3个通道:(Red通道,Green通道,Blue通道)一个像素颜色值:(b,g,r)取值范围:[0,255],[0.0,1.0]CMY(K)颜色空间减法混色,印刷4通道:Cyan通道,Magenta通道,Yellow通道原创 2022-04-30 20:19:39 · 786 阅读 · 0 评论 -
常用分类算法优缺点
贝叶斯算法(Bayes)优点:1:所需估计的参数少,对于缺失数据不敏感。2:有着坚实的数学基础,以及稳定的分类效率。缺点:1:需要假设属性之间相互独立,这往往不成立(例如,喜欢吃番茄,鸡蛋,缺不喜欢吃番茄吵鸡蛋)。2:需要知道先验概率。3:分类决策存在错误率决策树(Decision Tree)优点:1:不需要任何领域知识或参数假设。2:适合高维数据。3:简单,易于理解。4:能够在短时间内处理大量数据,得到可行且效果较好的结果。5:能够同时处理数据型和常规型属性。缺点:1:对于各类别样本数量不原创 2022-01-25 20:03:19 · 2410 阅读 · 0 评论 -
pip下载超时
pip下载超时解决方案:使用国内源安装:阿里云 http://mirrors.aliyun.com/pypi/simple/ 中国科技大学 https://pypi.mirrors.ustc.edu.cn/simple/ 豆瓣(douban) http://pypi.douban.com/simple/ 清华大学 https://pypi.tuna.tsinghua.edu.cn/simple/ 中国科学技术大学 http://pypi.mirrors.ustc.edu.cn/simpl原创 2020-11-21 19:44:37 · 129 阅读 · 0 评论