原码反码补码

1、对计算机中常见数据简单分类

数据分类:
(1)数值类型:1.整数:正整数、负整数; 2.浮点数
(2)非数值类型: 图片、视频、音频、文字

2、机器数 与 真值

机器数

就是数值在计算机中的二进制表现形式
机器数在计算机中有符号,使用最高位表示符号,使用0表示正,使用1表示负
一个字节8个bit位表示
例:+5=0000 0101
-10=1000 1010

真值

机器数所表示的真正的数值
例:1000 1010=-10

3、原码

原码就是符号位加上真值的绝对值

正数:
34:00100010
负数:
-29:10011101
-19:10010011

4、反码

正数:正数的反码=原码
例:+3=0000 0011【原码】=0000 0011【反码】

负数:符号位不变,其余各位直接取反
例:-7 原码:1000 0111 反码:1111 1000
-33 原码:1010 0001 反码:1101 1110
-37 原码:1010 0101 反码:1101 1010
-49 原码:1011 0001 反码:1100 1110

5、补码

计算机中数据以补码的形式存储,同样以补码的形式参与运算

正数:原码=反码=补码
例:+3=0000 0011【原码】=0000 0011【反码】=0000 0011【补码】

负数:首先求得反码。在反码基础上+1,加到最低位上
例:-34 原码:1010 0010 反码:1101 1101 补码:1101 1110
-29 原码:1001 1101 反码:1110 0010 补码:1110 0011
-47 原码:1010 1111 反码:1101 0000 补码:1101 0001

6、扩展

(1)为什么需要反码和补码?

反码
计算机的运算器只有加法器,没有减法器,为了将减法转换为加法进行计算。但是,反码有缺陷,正负相加0的表示不唯一

补码
为了解决反码正负相加不唯一的情况,使用高位溢出解决。

(2)使用补码计算

例:45-19=26
45 补码:0010 1101
-19补码:1110 1101
0001 1010【补码】=26

53-27=26
53 补码:0011 0101
-27补码:1110 0101
0001 1010【补码】=26

65-34=31
65 补码:0100 0001
-34 补码:1101 1110
0001 1111【补码】=31

-34-27=-61
-34 补码:1101 1110
-27补码:1110 0101
1100 0011【补码】
1011 1100 【取反】
1011 1101【+1为原码】=-61

(3)将补码转换为原码

正数:不需要转
负数:求补码的补码
将负数的补码当成原码,然后求该原码的补码

例:1101 1110【补码】 1010 0001【取反】 1010 0010【原码】
1001 1011【补码】 1110 0100【取反】 1110 0101【原码】
1110 0011 【补码】 1001 1100【取反】 1001 1101【原码】
1001 0011 【补码】 1110 1100【取反】 1110 1101【原码】
1111 1111 1000 0000【补码】1000 0000 0111 1111【取反】1000 0000 1000 0000=-128

计算规则:符号位不变,其余各位置直接取反,然后加1

<think>嗯,用户想学习或练习原码反码补码的概念及转换,需要提供练习题和解释转换方法。首先,我得回顾一下原码反码补码的基本知识,确保自己理解正确。原码是最直观的表示法,符号位加上绝对值的二进制形式。反码原码的符号位不变,其他位取反。补码则是反码加1,用于解决减法运算的问题。 用户可能对转换步骤不太清楚,需要分步骤说明。例如,正数的原码反码补码都相同,而负数则不同。练习题部分,应该设计不同数值的例子,覆盖正数、负数以及零的情况。单选题也是一个好的练习形式,比如引用中的题目,关于±0编码相同的选项,正确答案是补码和移码,用户提供的引用[2]中提到选项C正确,需要确认这一点。 转换方法需要详细步骤,可能用户会混淆补码的转换过程,尤其是负数的情况。比如,-5的原码是10000101,反码是11111010,补码是11111011。确保每个步骤都清晰,特别是补码为什么要加1,以及补码如何简化运算。 还要注意用户提到的引用内容,引用[1]说明补码解决了减法问题,引用[2]的练习题涉及到不同编码中±0的表现。需要正确引用这些资料,并在解释中自然地加入引用标识。例如,在解释补码的作用时,引用[^1],而在讨论练习题时引用[^2]。 另外,用户可能需要实际应用的例子,比如计算机中如何使用补码进行运算,避免符号位的处理问题。练习题应该由易到难,先单个数的转换,再涉及运算,比如两个补码相加后的结果判断。 最后,要确保回答结构清晰,分点解释概念、转换步骤、练习题及答案,以及相关问题的扩展,帮助用户全面理解和练习。同时,检查LaTeX格式是否正确,所有数学表达式用$...$或$$...$$,避免格式错误。</think>### 原码反码补码的概念及转换方法 原码反码补码是计算机中表示有符号整数的三种方式,核心目标是简化运算(尤其是减法)。以下是详细解释和练习题: --- #### **1. 基本概念** 1. **原码** - **定义**:符号位(最高位)表示正负,0为正,1为负;其余位为数值的绝对值。 - **示例**:$+5$ 的原码为 $00000101$,$-5$ 的原码为 $10000101$。 2. **反码** - **正数**:与原码相同。 - **负数**:符号位不变,数值位按位取反。 - **示例**:$-5$ 的反码为 $11111010$。 3. **补码** - **正数**:与原码相同。 - **负数**:反码加 $1$。 - **示例**:$-5$ 的补码为 $11111011$。 --- #### **2. 转换方法** 1. **原码反码补码** - **正数**:原码 = 反码 = 补码。 - **负数**: - 原码符号位不变,数值位取反 → 反码。 - 反码加 $1$ → 补码。 - **示例**:$-3$ - 原码:$10000011$ - 反码:$11111100$ - 补码:$11111101$ 2. **补码原码** - **方法**:补码取反后加 $1$(与原码补码过程一致)。 - **示例**:补码 $11111101$ → 取反 $10000010$ → 加 $1$ → 原码 $10000011$(即 $-3$)。 --- #### **3. 练习题与解析** **题目1** 将 $-7$ 转换为8位原码反码补码。 - **原码**:$10000111$ - **反码**:$11111000$ - **补码**:$11111001$ **题目2**(引用题) 单选题:±0编码相同的是( )。 A. 原码补码 B. 反码补码 C. 补码和移码 D. 原码和移码 - **答案**:C - **解析**:补码和移码中,$+0$ 和 $-0$ 的表示均为全0(补码)或特定偏移值(移码)[^2]。 **题目3** 补码 $10101010$ 对应的原码是多少? - **步骤**:补码取反 → $01010101$,加 $1$ → $01010110$,符号位为负 → $-86$。 --- #### **4. 核心作用** 补码解决了原码反码中“减法需特殊处理符号位”的问题,使加减法统一为加法运算[^1]。例如: $$5 - 3 = 5 + (-3)_{\text{补码}}$$ 计算机中直接对补码相加即可得到正确结果。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值