计算一个数组的子集

文章介绍了如何用回溯法解决找到一个整数数组的所有不重复子集(幂集)的问题。提供的C++代码实现中,通过递归地添加数组元素并检查避免重复子集的条件,构建了所有可能的子集。关键在于判断条件,确保子集的有序性和无重复性。
摘要由CSDN通过智能技术生成

计算一个数组的子集

原题参照:Subset/子集

给你一个整数数组 nums ,数组中的元素 互不相同 。返回该数组所有可能的子集(幂集)。

解集 不能 包含重复的子集。你可以按 任意顺序 返回解集。

示例 1:

输入:nums = [1,2,3]
输出:[[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]]

示例 2:

输入:nums = [0]
输出:[[],[0]]

解题思路

回溯法:确定子集是由长度为0~size个数字组成,所以就分别求对应长度所有的子集的交集,就是最终的子集。重点是一个判断条件temp.size()==0||(temp.size()>0&&temp[temp.size()-1]<nums[i]需要理解透。第一个子条件是确定子集中第一个数字,第二个条件是去除重复,防止出现子集数字重复,如[2,3][3,2]的情况。

样例代码,C++

vector<vector<int>> res;
vector<int> temp;
void backTracking(vector<int>& nums,int k){
    if(k==0){
        res.push_back({});
        return ;
    }
    else if(k==nums.size()){
        res.push_back(nums);
        return ;
    }
    if(temp.size()==k){
        res.push_back(temp);
        return ;
    }
    for(int i=0;i<nums.size();i++){
        if(temp.size()==0||(temp.size()>0&&temp[temp.size()-1]<nums[i])){
            temp.push_back(nums[i]);
            backTracking(nums,k);
            temp.pop_back();
        }
    }
}
vector<vector<int>> subsets(vector<int>& nums) {
    for(int i=0;i<=nums.size();i++){
        backTracking(nums,i);
    }
    return res;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Trouble..

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值