作者:范体军 梁玲 等
ISBN:978 7 03 059827 1
前言
基于RFID技术的零售供应链管理增加了供应链企业的固定成本(购买、安装RFID设备、应用软件等)以及变动成本(RFID标签等),造成“上游投资,下游受益”。
本文以基于博弈理论和供应链契约理论,分析不同类型成本、不同利益主体、不同竞争关系下的零售供应链和如何进行RFID技术的投资决策优化,实现供应链运作效率提升。
综合考虑库存缩减和库存错放两种库存不准确问题,分析供应链RFID技术应用的协调策略。
国内外研究现状
三十分钟理解博弈论“纳什均衡” – Nash Equilibrium
供应链契约
批发价格契约、收益共享契约、回购契约、数量柔性契约、价格折扣契约
基于RFID技术的供应链优化决策
基于RFID技术的供应链协调
价格外生的零售供应链RFID技术投资决策研究
基本上都是报童模型,考虑错放商品在销售季末能获得残值,而损耗商品能不能在销售季末为企业带来收入,然后对想要达到功能的参数进行一阶、二阶偏导,计算零售商的最优订货量,再根据解决什么问题来计算例如:供应链最大期望利润。
基于回购契约的零售供应链RFID技术投资决策研究
RFID技术被视为解决库存不准确问题的一个有前景的方案。该技术包含固定成本和可变的安装成本的应用,导致供应链的激励方案。对于大型连锁零售企业来说,大规模地将RFID应用到单品级商品,标签成本是一笔巨大的投资。
对于零售供应链,RFID技术可以降低人力成本,还能保证供应链的数据(特别是库存数据)完全准确,缓解供应链企业库存管理中普遍存在的库存记录与货架上实际可供数量的不一致,即库存不准确问题。
竞争型零售供应链RFID技术投资决策研究
根据制造商RFID技术投资应用的不同分为三种情景进行研究:两制造商不采用RFID技术(简称
M
M
MM
MM模式);仅一制造商采用RFID技术,另一制造商不采用此技术(简称
M
‾
M
\overline{M}M
MM模式);两制造商均采用RFID技术(简称
M
M
‾
\overline{MM}
MM模式)
结论5.1: 在讨价还价模式下,标签成本与销售价格、批发价格、市场平均期望需求的形成无关,通过改变零售商库存可利用率间接影响其受益,直接影响投资该技术的制造商的期望受益。
结论5.2:
M
M
‾
\overline{MM}
MM模式中制造商
j
j
j愿意投资RFID技术的标签阈值为:
太多了后面补上公式
结论5.3: 在标签成本阈值内,
M
M
‾
\overline{MM}
MM模式和
M
‾
M
\overline{M}M
MM模式中制造商收益随标签成本的增大而减小,但总大于
M
M
MM
MM模式情形下相应的收益。
结论5.4: 若制造商投资RFID技术,则零售商的收益变大;当投资初期RFID技术成本过高时,零售商可采用与制造商分摊成本或降低讨价还价幅度等方法激励制造商采用此技术。
数值仿真分析
- 三种模式下零售商收益与标签成本无关,零售商利润差为: Δ ∏ R i M M ‾ > Δ ∏ R 1 M ‾ M > Δ ∏ R 2 M ‾ M \Delta{\prod}_{Ri}^{\overline{MM}}>\Delta{\prod}_{R1}^{\overline{M}M}>\Delta{\prod}_{R2}^{\overline{M}M} Δ∏RiMM>Δ∏R1MM>Δ∏R2MM,说明当制造商采用RFID技术时,零售商搭便车免费共享次技术带来的溢出效应,其收益最大,但此时制造商所能承受的标签临界成本有限,因此,零售商可使用减少讨价还价的幅度或者成本分担等契约协调双方收益鼓励制造商采用RFID技术。
- 商品错放率、商品损耗率对零售商收益的影响
当库存不准确率很低时,必须要求制造商均采用RFID技术,收益才能最大化;当库存不准确率很高时,只需要求一个制造商采用RFID技术即可使利益最大化;当库存不准确率较高时,两制造商均采用RFID技术,收益反而最小。 - 讨价还价水平对制造商和零售商利润的影响
不采用RFID技术的制造商的收益并不是总随其相应零售商讨价还价能力的提升而减少,当讨价还价系数在一个合理区间时,供应链收益可以达到双赢。
分散式供应链竞争模式
考虑两条分散式竞争供应链均布投资RFID技术的博弈解,研究仅有一条供应链投资和均投资时的博弈解,分析标签成本阈值。
纵向每一条供应链中制造商为领导者,上下游之间进行Stackelberg博弈,横向制造商之间即零售商之间进行纳什博弈。
混合型供应链RFID技术投资决策研究
假设制造商1与零售商1独立决策,制造商2与零售商2达成战略联盟。四种情况:两条供应链均不采用RFID技术(简称 D C DC DC模式);供应链2采用RFID技术,供应链1不采用RFID技术(简称 D C ‾ D\overline{C} DC模式);供应链1采用RFID技术,供应链2不采用RFID技术(简称 D ‾ C \overline{D}C DC模式);供应链1和供应链2均采用RFID技术(简称 D C ‾ \overline{DC} DC模式)。
当库存可利用率很高时,四种模式下供应链系统的收益分别为: ∏ S C 12 D C ∗ > ∏ S C 12 D ‾ C ∗ > ∏ S C 12 D C ‾ ∗ > ∏ S C 12 D C ‾ \prod_{SC12}^{DC^{*}}>\prod_{SC12}^{\overline{D}C^{*}}>\prod_{SC12}^{D\overline{C}^{*}}>\prod_{SC12}^{\overline{DC}} ∏SC12DC∗>∏SC12DC∗>∏SC12DC∗>∏SC12DC,供应链最优策略是:不投资RFID技术;当库存利用率处于中等水平是,收益情况刚好相反,两条供应链都采用RFID技术时最优策略;当库存利用率很低时,供应链系统的收益为: ∏ S C 12 D C ∗ < ∏ S C 12 D C ‾ < ∏ S C 12 D C ‾ ∗ < ∏ S C 12 D ‾ C ∗ \prod_{SC12}^{DC^{*}}<\prod_{SC12}^{\overline{DC}}<\prod_{SC12}^{D\overline{C}^{*}}<\prod_{SC12}^{\overline{D}C^{*}} ∏SC12DC∗<∏SC12DC<∏SC12DC∗<∏SC12DC∗,这时分散式供应链投资RFID技术时最优策略,但零售商库存很少有太低的情况发生。
总结
本文的研究是基于博弈论理论和供应链契约理论。公式我没怎么看懂
参考文献
后记
作者的其他书:
《基于RFID技术的零售供应链决策优化》
《供应链RFID技术的投资决策及协调策略》
《生鲜农产品供应链契约协调》