Kafka
文章平均质量分 97
kafka
bubble小拾
梦想不止于编程,行动才是起点
展开
-
Kafka日志索引详解与常见问题分析
Kafka的Log日志梳理这一部分数据主要包含当前Broker节点的消息数据(在Kafka中称为Log日志)。这是一部分无状态的数据,也就是说每个Kafka的Broker节点都是以相同的逻辑运行。这种无状态的服务设计让Kafka集群能够比较容易的进行水平扩展。比如你需要用一个新的Broker服务来替换集群中一个旧的Broker服务,那么只需要将这部分无状态的数据从旧的Broker上转移到新的Broker上就可以了。当然,这里说的的数据转移,并不是复制,粘贴这么简单,因为底层的数据文件中的细节还是非常多原创 2024-09-16 19:49:44 · 1962 阅读 · 0 评论 -
kafka集群架构设计原理详解
Kafka依赖很多的存储数据,但是,总体上是有划分的。Kafka会将每个服务的不同之处,也就是状态信息,保存到Zookeeper中。通过Zookeeper中的数据,指导每个Kafka进行与其他Kafka节点不同的业务逻辑。而将状态信息抽离后,剩下的数据,就可以直接存在Kafka本地,所有Kafka服务都以相同的逻辑运行。这种状态信息分离的设计,让Kafka有非常好的集群扩展性。Kafka依赖很多的存储数据,但是,总体上是有划分的。Kafka会将每个服务的不同之处,也就是状态信息,保存到Zookeeper中。原创 2024-09-13 23:00:00 · 1430 阅读 · 0 评论 -
Kafka客户端核心参数详解
Kafka提供了两套客户端API,HighLevel API和LowLevel API。 HighLevel API封装了kafka的运行细节,使用起来比较简单,是企业开发过程中最常用的客户端API。 而LowLevel API则需要客户端自己管理Kafka的运行细节,Partition,Offset这些数据都由客户端自行管理。这层API功能更灵活,但是使用起来非常复杂,也更容易出错。只在极少数对性能要求非常极致的场景才会偶尔使用。重点是HighLeve API 。原创 2024-09-11 00:18:33 · 2391 阅读 · 0 评论 -
Kafka集群搭建与基本原理详解
为什么要用Kafka,业务场景决定了产品的特点。1、数据吞吐量很大: 需要能够快速收集各个渠道的海量日志。2、集群容错性高:允许集群中少量节点崩溃。3、功能不需要太复杂:Kafka的设计目标是高吞吐、低延迟和可扩展,主要关注消息传递而不是消息处理。所以,Kafka并没有支持死信队列、顺序消息等高级功能。4、允许少量数据丢失:Kafka本身也在不断优化数据安全问题,目前基本上可以认为Kafka可以做到不会丢数据。原创 2024-09-09 00:13:44 · 2080 阅读 · 0 评论