最短路

在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt。但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你可以帮助他们吗?

Input
输入包括多组数据。每组数据第一行是两个整数N、M(N<=100,M<=10000),N表示成都的大街上有几个路口,标号为1的路口是商店所在地,标号为N的路口是赛场所在地,M则表示在成都有几条路。N=M=0表示输入结束。接下来M行,每行包括3个整数A,B,C(1<=A,B<=N,1<=C<=1000),表示在路口A与路口B之间有一条路,我们的工作人员需要C分钟的时间走过这条路。 输入保证至少存在1条商店到赛场的路线。

Output
对于每组输入,输出一行,表示工作人员从商店走到赛场的最短时间

Sample Input
2 1
1 2 3
3 3
1 2 5
2 3 5
3 1 2
0 0

Sample Output
3
2

分析: 本题需要利用弗洛伊德(Floyd)算法来求最短路径,令我们感到很开心的一件事情是弗洛伊德算法依旧有模板,你们是不是也感到很开心呢,嘿嘿,而且使用弗洛伊德算法来求最短路径要比之前的迪杰斯特拉(Dijsktra)算法更好理解,更容易弄懂,接下来就闲话少叙,请看代码。

代码如下:

#include"stdio.h"
#include"string.h"  
#include"string"
#include"iostream"  
#include"stack"  
#include"queue"  
#include"vector"  
#include"algorithm"  
#define mem(a,b) memset(a,b,sizeof(a))  
using namespace std;  
const int inf=1<<29;  
int main()  
{  
    int map[105][105],n,m,t1,t2,t3;  
    while(~scanf("%d%d",&n,&m)&&n&&m)//n表示顶点个数,m表示边的条数  
	{
    	//初始化  
        for(int i=1;i<=n;i++)
	    {  
            for(int j=1;j<=n;j++)  
            {
                if(i==j)  
                {
                    map[i][j]=0;  
                }
                else  
                {
                    map[i][j]=inf;  
                }
            }
        }
        //读入边  
        for(int i=1;i<=m;i++)  
        {  
            scanf("%d %d %d",&t1,&t2,&t3);  
            map[t1][t2]=map[t2][t1]=t3; 
        }  
        //弗洛伊德(Floyd)核心语句  
        for(int k=1;k<=n;k++)
	    {  
            for(int i=1; i<=n; i++)  
            {
                for(int j=1; j<=n; j++)   
                {
                    if(map[i][k]+map[k][j]<map[i][j])  
                    {
                        map[i][j]=map[i][k]+map[k][j];
                    }
                }
            }
        }
        printf("%d\n",map[1][n]);  
	}  
    return 0;  
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值