EWC学习

EWC(ElasticWeightConsolidation)是一种正则化策略,用于防止在连续学习任务中遗忘先前的知识。它通过计算参数对损失函数的一阶导数来定义重要性矩阵,并在基础损失函数上添加正则化项,限制参数的更新。在separate和online两种模式下,EWC模型会根据不同的方式整合来自历史模型的惩罚项。训练过程包括计算重要度矩阵、计算EWC的L2损失并将其添加到总损失中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

EWC学习

Elastic Weight Consolidation(EWC):基于正则化的模型长期学习方法。

基础思想: EWC把原模型中的参数用正则化保护。

分为两个模型:原模型和EWC模型。

原模型保持原来的情况。

EWC模型:

定义重要度(矩阵)precision_metrices:有多种方式,比如计算参数对损失函数的一阶导数

在基础的损失函数上新增正则化项,每个参数受到自己在上一个任务训练完毕之后最后的参数值的约束。也就是每次梯度下降更新参数后,在上面做一个L2惩罚。

separate 和online的区别:

separate的ewc模型每次只接收上一个模型的惩罚项的参数,所以重要度矩阵是仅仅根据上一个模型得出来的,和本次传入的数据集的模型进行整合。online把所有的惩罚项的系数全都加到惩罚项中,也就是重要度矩阵是根据之前所有的模型得出来的,和本次传入的数据集的模型进行整合。在进行后续模型的训练时,需要固定住中间的部分层数,固定模型。

def set_freeze_by_names(model, layer_names, freeze=True):
    if not isinstance(layer_names, Iterable):
        layer_names = [layer_names]
    for name, child in model.named_children():
        if name not in layer_names:
            continue
        for param in child.parameters():
            param.requires_grad = not freeze
separate实现步骤:

1 用第一个数据集data_1训练初始模型model_1

2 拿到model_1的参数,在model_1的数据集上,用梯度的平方作为重要度。用第二个数据集data_2

for n, p in model.named_parameters()  :
    if p.requires_grad:
        precision_matrices[n].data += p.grad.data ** 2 / len(previous_loader)

3 在model_2的数据集上,额外计算ewc的l2 loss。在当前loss 上,加上l2 loss。

ce_loss = loss_func(outputs, labels)
total_loss = ce_loss
# 额外计算EWC的L2 loss
ewc_loss = 0
for n, p in model.named_parameters():
    if p.requires_grad:
        _loss = precision_matrices[n] * (p - _means[n]) ** 2
        ewc_loss += _loss.sum()
total_loss += lambda_ewc * ewc_loss
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值