leetcode-42.连续子数组的最大和

1. 问题描述

输入一个整型数组,数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。要求时间复杂度为O(n)。

示例1:

输入: nums = [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
leetcode 42.连续子数组的最大和

2. 问题分析

1. 动态规划

假设 nums \textit{nums} nums 数组的长度是 n n n,下标从 0 到 n−1。我们用 f ( i ) f(i) f(i) 代表以第 i i i 个数结尾的「连续子数组的最大和」,那么很显然我们要求的答案就是: max ⁡ 0 ≤ i ≤ n − 1 { f ( i ) } \max_{0 \leq i \leq n-1} \{ f(i) \} 0in1max{f(i)}因此我们只需要求出每个位置的 f ( i ) f(i) f(i),然后返回 f f f 数组中的最大值即可。那么我们如何求 f ( i ) f(i) f(i) 呢?我们可以考虑 nums [ i ] \textit{nums}[i] nums[i] 单独成为一段还是加入 f ( i − 1 ) f(i-1) f(i1) 对应的那一段,这取决于 nums [ i ] \textit{nums}[i] nums[i] f ( i − 1 ) + nums [ i ] f(i-1) + \textit{nums}[i] f(i1)+nums[i] 的大小,我们希望获得一个比较大的,于是可以写出这样的动态规划转移方程: f ( i ) = max ⁡ { f ( i − 1 ) + nums [ i ] , nums [ i ] } f(i) = \max \{ f(i-1) + \textit{nums}[i], \textit{nums}[i] \} f(i)=max{f(i1)+nums[i],nums[i]}不难给出一个时间复杂度 O ( n ) O(n) O(n)、空间复杂度 O ( n ) O(n) O(n) 的实现,即用一个 f f f 数组来保存 f ( i ) f(i) f(i) 的值,用一个循环求出所有 f ( i ) f(i) f(i)。考虑到 f ( i ) f(i) f(i) 只和 f ( i − 1 ) f(i-1) f(i1) 相关,于是我们可以只用一个变量 pre \textit{pre} pre 来维护对于当前 f ( i ) f(i) f(i) f ( i − 1 ) f(i-1) f(i1) 的值是多少,从而让空间复杂度降低到 O ( 1 ) O(1) O(1),这有点类似「滚动数组」的思想。

class Solution {
    public int maxSubArray(int[] nums) {
        int pre = 0, maxAns = nums[0];
        for (int x : nums) {
            pre = Math.max(pre + x, x);
            maxAns = Math.max(maxAns, pre);
        }
        return maxAns;
    }
}
2. 分治法

这个分治方法类似于「线段树求解最长公共上升子序列问题」的 pushUp 操作。 当然,如果读者有兴趣的话,推荐阅读线段树区间合并法解决多次询问的「区间最长连续上升序列问题」和「区间最大子段和问题」,还是非常有趣的。
我们定义一个操作 g e t ( a , l , r ) get(a, l, r) get(a,l,r) 表示查询 a a a 序列 [ l , r ] [l,r] [l,r] 区间内的最大子段和,那么最终我们要求的答案就是 g e t ( n u m s , 0 , n u m s . s i z e ( ) − 1 ) get(nums, 0, nums.size() - 1) get(nums,0,nums.size()1)。如何分治实现这个操作呢?对于一个区间 [ l , r ] [l,r] [l,r],我们取 m = ⌊ l + r 2 ⌋ m = \lfloor \frac{l + r}{2} \rfloor m=2l+r,对区间 [ l , m ] [l,m] [l,m] [ m + 1 , r ] [m+1,r] [m+1,r] 分治求解。当递归逐层深入直到区间长度缩小为 1 的时候,递归「开始回升」。这个时候我们考虑如何通过 [ l , m ] [l,m] [l,m] 区间的信息和 [ m + 1 , r ] [m+1,r] [m+1,r] 区间的信息合并成区间 [ l , r ] [l,r] [l,r] 的信息。最关键的两个问题是:
我们要维护区间的哪些信息呢?我们如何合并这些信息呢?
对于一个区间 [ l , r ] [l,r] [l,r],我们可以维护四个量:
(1) lSum \textit{lSum} lSum 表示 [ l , r ] [l,r] [l,r] 内以 l l l 为左端点的最大子段和
(2) rSum \textit{rSum} rSum表示 [ l , r ] [l,r] [l,r] 内以 r r r 为右端点的最大子段和
(3) mSum \textit{mSum} mSum 表示 [ l , r ] [l,r] [l,r] 内的最大子段和
(4) iSum \textit{iSum} iSum 表示 [ l , r ] [l,r] [l,r] 的区间和
以下简称 [ l , m ] [l,m] [l,m] [ l , r ] [l,r] [l,r] 的「左子区间」, [ m + 1 , r ] [m+1,r] [m+1,r] [ l , r ] [l,r] [l,r] 的「右子区间」。我们考虑如何维护这些量呢(如何通过左右子区间的信息合并得到 [ l , r ] [l,r] [l,r] 的信息)?对于长度为 1 的区间 [ i , i ] [i, i] [i,i],四个量的值都和 nums [ i ] \textit{nums}[i] nums[i] 相等。对于长度大于 1 的区间:
首先最好维护的是 iSum \textit{iSum} iSum,区间 [ l , r ] [l,r] [l,r] iSum \textit{iSum} iSum 就等于「左子区间」的 iSum \textit{iSum} iSum 加上「右子区间」的 iSum \textit{iSum} iSum
对于 [ l , r ] [l,r] [l,r] lSum \textit{lSum} lSum,存在两种可能,它要么等于「左子区间」的 lSum \textit{lSum} lSum,要么等于「左子区间」的 iSum \textit{iSum} iSum 加上「右子区间」的 lSum \textit{lSum} lSum,二者取大。
对于 [ l , r ] [l,r] [l,r] rSum \textit{rSum} rSum,同理,它要么等于「右子区间」的 rSum \textit{rSum} rSum,要么等于「右子区间」的 iSum \textit{iSum} iSum 加上「左子区间」的 rSum \textit{rSum} rSum,二者取大。
当计算好上面的三个量之后,就很好计算 [ l , r ] [l,r] [l,r] mSum \textit{mSum} mSum 了。我们可以考虑 [ l , r ] [l,r] [l,r] mSum \textit{mSum} mSum 对应的区间是否跨越 m m m——它可能不跨越 m m m,也就是说 [ l , r ] [l,r] [l,r] mSum \textit{mSum} mSum 可能是「左子区间」的 mSum \textit{mSum} mSum 和 「右子区间」的 mSum \textit{mSum} mSum 中的一个;它也可能跨越 m m m,可能是「左子区间」的 rSum \textit{rSum} rSum 和 「右子区间」的 lSum \textit{lSum} lSum 求和。三者取大。
这样问题就得到了解决

class Solution {
    public class Status{										//内部类:定义Status类
        public int lSum, rSum, mSum, iSum;
        public Status(int lSum, int rSum, int mSum, int iSum){
            this.lSum = lSum;
            this.rSum = rSum;
            this.mSum = mSum;
            this.iSum = iSum;
        }
    }
    
    public int maxSubArray(int[] nums){
        return getInfo(nums, 0, nums.length - 1).mSum;
    }

    public Status getInfo(int[] a, int left, int right){				//递归更新左右状态信息
        if(left == right)												//此时数组只有一个元素
            return new Status(a[left], a[left], a[left], a[left]);

        int mid = (left + right) >> 1;									//从中间划分区间
        Status lSub = getInfo(a, left, mid);							//求左边的状态
        Status rSub = getInfo(a, mid + 1, right);						//求右边的状态
        return pushUp(lSub, rSub);
    }

    public Status pushUp(Status lSub, Status rSub) {					//合并左右区间的信息
        int iSum = lSub.iSum + rSub.iSum;										
        int lSum = Math.max(lSub.lSum, lSub.iSum + rSub.lSum);
        int rSum = Math.max(rSub.rSum, rSub.iSum + lSub.rSum);
        int mSum = Math.max(Math.max(lSub.mSum, rSub.mSum), lSub.rSum + rSub.lSum);
        return new Status(lSum, rSum, mSum, iSum);
    }
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述:给定一个非负整数数组nums和一个整数m,你需要将这个数组分成m个非空的连续数组。设计一个算法使得这m个数组中的最大和最小。 解题思路: 这是一个典型的二分搜索题目,可以使用二分查找来解决。 1. 首先确定二分的左右边界。左边界为数组最大的值,右边界为数组中所有元素之和。 2. 在二分搜索的过程中,计算出分割数组的组数count,需要使用当前的中间值来进行判断。若当前的中间值不够分割成m个数组,则说明mid值偏小,将左边界更新为mid+1;否则,说明mid值偏大,将右边界更新为mid。 3. 当左边界小于等于右边界时,循环终止,此时的左边界即为所求的结果。 具体步骤: 1. 遍历数组,找到数组中的最大值,并计算数组的总和。 2. 利用二分查找搜索左右边界,从左边界到右边界中间的值为mid。 3. 判断当前的mid值是否满足题目要求,若满足则更新右边界为mid-1; 4. 否则,更新左边界为mid+1。 5. 当左边界大于右边界时,循环终止,返回左边界即为所求的结果。 代码实现: ```python class Solution: def splitArray(self, nums: List[int], m: int) -> int: left = max(nums) right = sum(nums) while left <= right: mid = (left + right) // 2 count = 1 total = 0 for num in nums: total += num if total > mid: total = num count += 1 if count > m: left = mid + 1 else: right = mid - 1 return left ``` 时间复杂度分析:二分搜索的时间复杂度为O(logN),其中N为数组的总和,而遍历数组的时间复杂度为O(N),因此总的时间复杂度为O(NlogN)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值