leetcode 239-滑动窗口最大值

在这里插入图片描述

前言

对于每个滑动窗口,我们可以使用 O ( k ) O(k) O(k) 的时间遍历其中的每一个元素,找出其中的最大值。对于长度为 n n n 的数组 n u m s nums nums 而言,窗口的数量为 n − k + 1 n-k+1 nk+1,因此该算法的时间复杂度为 O ( ( n − k + 1 ) k ) = O ( n k ) O((n-k+1)k)=O(nk) O((nk+1)k)=O(nk),会超出时间限制,因此我们需要进行一些优化。
我们可以想到,对于两个相邻(只差了一个位置)的滑动窗口,它们共用着 k − 1 k-1 k1 个元素,而只有 1 1 1 个元素是变化的,我们可以根据这个特点进行优化。

方法一:优先队列

思路与算法

对于 最大值,我们可以想到一种非常合适的数据结构,那就是优先队列(堆),其中的大根堆可以帮助我们实时维护一系列元素中的最大值。

对于本题而言,初始时,我们将数组 n u m s nums nums 的前 k k k 个元素放入优先队列中。每当我们向右移动窗口时,我们就可以把一个新的元素放入优先队列中,此时堆顶的元素就是堆中所有元素的最大值。然而这个最大值可能并不在滑动窗口中,在这种情况下,这个值在数组 n u m s nums nums 中的位置出现在滑动窗口左边界的左侧。因此,当我们后续继续向右移动窗口时,这个值就永远不可能出现在滑动窗口中了,我们可以将其永久地从优先队列中移除。

我们不断地移除堆顶的元素,直到其确实出现在滑动窗口中。此时,堆顶元素就是滑动窗口中的最大值。为了方便判断堆顶元素与滑动窗口的位置关系,我们可以在优先队列中存储二元组 ( n u m , i n d e x ) (num, index) (num,index),表示元素 n u m num num 在数组中的下标为 i n d e x index index

代码
class Solution{
public:
	vector<int> maxSlidingWindow(vector<int>& nums, int k){
		priority_queue<pair<int, int>> q;
		for(int i = 0; i < k; ++i){							//将nums的前k个元素放入优先队列中
			q.emplace(nums[i], i);
		}
		vector<int> ans = {q.top().first};					//将前k个元素的最大值放入结果列表
		for(int i = k; i < n; ++i){
			q.emplace(nums[i], i);
			while(q.top().second <= i - k)					//当最大值不在滑动窗口中时,出队
				q.pop();
			ans.push_back(q.top().first);
		}
		return ans;
	}
};
复杂度分析
  • 时间复杂度: O ( n log ⁡ n ) O(n\log{n}) O(nlogn),其中 n n n n u m s nums nums 的长度。在最坏情况下,数组 n u m s nums nums 中的元素单调递增,那么最终优先队列中包含了所有元素,没有元素被移除。由于将一个元素放入优先队列的时间复杂度为 O ( log ⁡ n ) O(\log{n}) O(logn),因此总时间复杂度为 O ( n log ⁡ n ) O(n\log{n}) O(nlogn)
  • 空间复杂度:KaTeX parse error: Expected 'EOF', got '}' at position 4: O(n}̲,即为优先队列需要使用的空间。

方法二:单调队列

思路与算法

我们可以顺着方法一的思路继续优化。

由于我们需要求出的是滑动窗口的最大值,如果当前滑动窗口中有两个下标 i i i j j j,其中 i i i j j j 的左侧 ( i < j ) (i <j) (i<j),并且 i i i 对应的元素不大于 j j j 对应的元素 ( n u m s [ i ] ≤ n u m s [ j ] ) (nums[i] \le nums[j]) (nums[i]nums[j]),那么会发生什么呢?

当滑动窗口向右移动时,只要 i i i 还在窗口中,那么 j j j 一定也还在窗口中,这是 i i i j j j 的左侧所保证的。因此,由于 n u m s [ j ] nums[j] nums[j] 的存在, n u m s [ i ] nums[i] nums[i] 一定不会是滑动窗口中的最大值了,我们可以将 n u m s [ i ] nums[i] nums[i] 永久移除。

因此我们可以使用一个队列存储所有还没有被移除的下标。在队列中,这些下标按照从小到大的顺序被存储,并且它们在数组 n u m s nums nums 中对应的值是严格单调递减的。因为如果队列中有两个相邻的下标,它们对应的值相等或者递增,那么根据上面的说法前者就会被移除,这产生了矛盾。

当滑动窗口向右移动时,我们需要把一个新的元素放入队列中。为了保持队列的性质,我们会不断地将新的元素与队尾元素比较,如果前者大于等于后者,那么队尾元素就可以被永久移除,将其弹出对垒。我们需要不断地进行此项操作,直到队列为空或者新元素小于队尾元素。

由于队列中下标对应的元素是严格单调递减的,因此此时队首下标对应的元素就是滑动窗口中的最大值。但与方法一中相同的是,此时的最大值可能在滑动窗口左边界的左侧,并且随着窗口向右移动,它永远不可能出现在滑动窗口中了。因此我们还需要不断从队首弹出元素,直到队首元素在窗口中为止。

为了可以同时弹出队首和队尾元素,我们需要使用双端队列。满足这种单调性的双端队列一般称作 单调队列

代码
class Solution{
public:
	vector<int> maxSlidingWindow(vector<int>& nums, int k){
		deque<int> q;
		for(int i = 0; i <  k; ++i){							//将前k个元素放入队列中,保持严格单调递减
			while(!q.empty() && nums[i] >= nums[q.back()])
				q.pop_back();
			q.push_back(i);
		}
		
		vector<int> ans = {nums[q.front()]};
		for(int i = k; i < n; ++i){
			while(!q.empty() && nums[i] >= nums[q.back()])		//保持队列严格单调递减
				q.pop_back();
			q.push_back(i);
			while(q.front() <= i - k)							//移除不在滑动窗口中的元素
				q.pop_front();
			ans.push_back(nums[q.front()]);						//此时队首元素就是当前滑动窗口的最大值
		}
		return ans;
	}
}
复杂度分析
  • 时间复杂度: O ( n ) O(n) O(n),其中 n n n 是数组 n u m s nums nums 的长度。每一个下标恰好被放入队列一次,并且最多被弹出队列一次,因此时间复杂度为 O ( n ) O(n) O(n)
  • 空间复杂度: O ( k ) O(k) O(k)。与方法一不同的是,在方法二中我们使用的数据结构是双向的,因此 不断从队首弹出元素 保证了队列中最多不会有超过 k + 1 k+1 k+1 个元素。

方法三:分块 + 预处理

思路与算法

除了基于 随着窗口的移动实时维护最大值 的方法一和方法二以外,我们还可以考虑其它有趣的做法。

我们可以将数组 n u m s nums nums 从左到右按照 k k k 个一组进行分组,最后一组中元素的数量可能会不足 k k k 个。如果我们希望求出 n u m s [ i ] nums[i] nums[i] n u m s [ i + k − 1 ] nums[i + k - 1] nums[i+k1] 的最大值,就会有两种情况:

  • 如果 i i i k k k 的倍数,那么 n u m s [ i ] nums[i] nums[i] n u m s [ i + k − 1 ] nums[i + k - 1] nums[i+k1] 恰好是一个分组。我们只要预处理出每个分组中的最大值,即可得到答案。
  • 如果 i i i 不是 k k k 的倍数,那么 n u m s [ i ] nums[i] nums[i] n u m s [ i + k − 1 ] nums[i + k - 1] nums[i+k1] 会跨越两个分组,占有第一个分组的后缀以及第二个分组的前缀。假设 j j j k k k 的倍数,并且满足 i < j ≤ i + k − 1 i < j \le i+k-1 i<ji+k1,那么 n u m s [ i ] nums[i] nums[i] n u m s [ j − 1 ] nums[j - 1] nums[j1] 就是第一个分组的后缀, n u m s [ j ] nums[j] nums[j] n u m s [ i + k − 1 ] nums[i + k - 1] nums[i+k1] 就是第二个分组的前缀。如果我们能够预处理出每个分组中的前缀最大值以及后缀最大值,同样可以在 O ( 1 ) O(1) O(1) 时间得到答案。

因此我们使用 p r e i f x M a x [ i ] preifxMax[i] preifxMax[i] 表示下标 i i i 对应的分组中,以 i i i 结尾的前缀的最大值; s u f f i x M a x [ i ] suffixMax[i] suffixMax[i] 表示下标 i i i 对应的分组中,以 i i i 开始的后缀最大值。它们分别满足如下的递推式。
p r e f i x M a x [ i ] = { n u m s [ i ] , i 是 k 的倍数 max { p r e f i x M a x [ i − 1 ] , n u m s [ i ] } , i 不是 k 的倍数 prefixMax[i]=\begin{cases} nums[i],i 是 k 的倍数\\ \text{max}\{prefixMax[i-1], nums[i]\},i 不是 k 的倍数\end{cases} prefixMax[i]={nums[i]ik的倍数max{prefixMax[i1],nums[i]}i不是k的倍数
以及
s u f f i x M a x [ i ] = { n u m s [ i ] , i + 1 是 k 的倍数 max { s u f f i x M a x [ i + 1 ] , n u m s [ i ] } , i + 1 不是 k 的倍数 suffixMax[i]=\begin{cases} nums[i],i+1 是 k 的倍数\\ \text{max}\{suffixMax[i+1], nums[i]\},i+1 不是 k 的倍数\end{cases} suffixMax[i]={nums[i]i+1k的倍数max{suffixMax[i+1],nums[i]}i+1不是k的倍数
需要注意在递推 s u f f i x M a x [ i ] suffixMax[i] suffixMax[i] 时需要考虑到边界条件 s u f f i x M a x [ n − 1 ] = n u m s [ n − 1 ] suffixMax[n-1]=nums[n-1] suffixMax[n1]=nums[n1],而在递推 p r e f i x M a x [ i ] prefixMax[i] prefixMax[i] 时,的边界条件 p r e f i x M a x [ 0 ] = n u m s [ 0 ] prefixMax[0]=nums[0] prefixMax[0]=nums[0] 恰好包含在递推式的第一种情况中,因此无需特殊考虑。

在预处理完成后,对于 n u m s [ i ] nums[i] nums[i] n u m s [ i + k − 1 ] nums[i+k-1] nums[i+k1] 的所有元素:

  • 如果 i i i 不是 k k k 的倍数,那么窗口中的最大值为 s u f f i x M a x [ i ] suffixMax[i] suffixMax[i] p r e f i x M a x [ i + k − 1 ] prefixMax[i+k-1] prefixMax[i+k1] 中的较大值;
  • 如果 i i i k k k 的倍数,那么此时窗口恰好对应一整个分组, s u f f i x M a x [ i ] suffixMax[i] suffixMax[i] p r e f i x M a x [ i + k − 1 ] prefixMax[i+k-1] prefixMax[i+k1] 都等于分组中的最大值

因此无论窗口属于哪一种情况, max { s u f f i x M a x [ i ] , p r e f i x M a x [ i + k − 1 ] } \text{max}\{suffixMax[i], prefixMax[i+k-1]\} max{suffixMax[i],prefixMax[i+k1]} 都为答案。

这种方法与稀疏表十分类似。

代码
class Solution{
public:
	vector<int> maxSlidingWindow(vector<int>& nums, int k){
		vector<int> prefixMax(n), suffixMax(n);
		for(int i = 0; i < nums.size(); i++){						//根据公式更新前缀最大值数组
			if(i % k == 0)
				prefixMax[i] = nums[i];
			else
				prefixMax[i] = max(prefixMax[i - 1], nums[i]);
		}

		for(int i = n - 1; i >= 0; --i){					    	//根据公式更新后缀最大值数组
			if(i == n - 1 || (i + 1) % k == 0)						//注意边界条件
				suffixMax[i] = nums[i];
			else
				suffixMax[i] = max(suffixMax[i + 1], nums[i]);
		}
		
		vector<int> ans;
		for(int i = 0; i <= n - k; ++i)
			ans.push_back(max(suffixMax[i], prefixMax[i + k - 1]));
		return ans;
	}
};
复杂度分析
  • 时间复杂度: O ( n ) O(n) O(n),其中 n n n 是数组 n u m s nums nums 的长度。我们需要 O ( n ) O(n) O(n) 的时间预处理出数组 p r e f i x M a x prefixMax prefixMax s u f f i x M a x suffixMax suffixMax 以及计算答案。
  • 空间复杂度: O ( n ) O(n) O(n),即存储 p r e f i x M a x prefixMax prefixMax s u f f i x M a x suffixMax suffixMax 需要的空间。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值