LeetCode 1191-K次串联后最大子数组之和

在这里插入图片描述

预备知识

最大子数列问题:在一维数列中找到一个连续的子数列,使该子数列的和最大。
在这里插入图片描述

对于该问题有一个基于动态规划的经典算法: Kadane \text{Kadane} Kadane 算法。该算法使用 maxOfEnd 表示以当前数组元素结尾的最大子数列和,转移过程也十分简单——要么就是只取当前元素,要么就是拖家带口把前一元素的 maxOfEnd 一起带上。

a r r = [ 5 , 7 , − 3 , 2 , 9 , 6 , 16 ] arr = [5,7,-3,2,9,6,16] arr=[5,7,3,2,9,6,16],假设子数列在索引 2 2 2 处开始, a r r [ 2 ] = − 3 arr[2]=-3 arr[2]=3,然后到索引 3 3 3,连续子数列和为 − 3 + 2 = − 1 -3+2=-1 3+2=1。如果子数列在索引 3 3 3 处开始,那么此时子数列和为 2 2 2,大于前一个子数列和。

所以我们有两种选择:在当前索引处开始 或者 将当前值加入前一个子数列和。由于我们想要最大子数列和,所以当前一个子数列和小于 0 0 0 时,我们将当前值加上 0 0 0,否则将当前值加上前一个子数列和。
d p [ i ] = m a x ( d p [ i − 1 ] , 0 ) + a r r [ i ]             ∀ i ∈ [ 1 , n − 1 ] dp[i]=max(dp[i-1],0)+arr[i]\ \ \ \ \ \ \ \ \ \ \ \forall i\in[1, n-1] dp[i]=max(dp[i1],0)+arr[i]           i[1,n1]

对于上述示例,我们可以使用以下的 Kadane \text{Kadane} Kadane 算法计算:

int largestSubarraySum(int[] arr){
	int maxOfEnd, maxSoFar;
	maxSoFar = maxOfEnd = arr[0] > 0 ? arr[0] : 0;
	for(int i = 1; i < arr.length; i++){
		maxOfEnd = Math.max(maxOfEnd + arr[i], arr[i]);		//记录以当前数组元素结尾的最大子数列和
		maxSoFar = Math.max(maxOfEnd, maxSoFar);			//记录当前子数列和中最大值
	}
	return maxSoFar;
}

方法一:动态规划

在这里插入图片描述

回到问题本身,由于数组可以重复出现,所以实际上,我们的子数组是可以跨过原始数组 arr 的边界的。如果我们限制子数组长度在 arr.length 以内,那么问题将转变为 “最大子数组和” 的变种,即子数组可以是以下两种形式:

  • 常规型:就是通常意义的子数组。formal(i,j) 定义为:arr[i] + arr[i+1] + ... + arr[j],其中 0 <= i <= j < arr.length
  • 非常规型:这种子数组分为两段,第一段为原始数组的首元素开始,第二段以原始数组的末元素结尾。nonformal(i,j) 定义为:arr[0] + arr[1] + ... + arr[i] + arr[j] + arr[j+1] + ... + arr[arr.length-1],其中 0 <= i <= j < arr.length

上面这个变种问题,我们可以通过下面算法来解决:我们准备两个 arr,然后对它执行 Kadane \text{Kadane} Kadane 算法,这样我们得到的结果一定涵盖了上面两种类型的子数组。

int largestSubarraySum(int[] arr) {
  int maxOfEnd, maxSoFar, len = arr.length;
  maxSoFar = maxOfEnd = arr[0] > 0 ? arr[0] : 0;
  for (int i = 1; i < len * 2; i++) {
    maxOfEnd = Math.max(maxOfEnd + arr[i % len], arr[i % len]);
    maxSoFar = Math.max(maxOfEnd, maxSoFar);
  }
  return maxSoFar;
}

上面算法给出的结果为如下图红色部分,为什么呢?
在这里插入图片描述
我们把结果分成两部分:蓝色和绿色。可以看出,这是一个常规性的子数组(蓝色)加上一个完整的原始数组 arr 得到的。[55,66] 是所有常规和非常规子数组中最大的,但是因为 sum(arr) > 0,所以它还可以被扩展一个 arr.length 的长度。因此,我们可以得出最后的算法,如果 sum(arr) > 0maxSoFar 可以反复叠加 k - 2sum(arr)k==1 的边界条件需要小心处理。

class Solution {
    public int kConcatenationMaxSum(int[] arr, int k) {
        if(arr == null || arr.length == 0)
            return 0;
        long maxOfEnd = arr[0] > 0 ? arr[0] : 0L, maxSoFar = maxOfEnd, sum = arr[0];
        for(int i = 1; i < Math.min(k, 2) * arr.length; i++){
            maxOfEnd = Math.max(maxOfEnd + arr[i % arr.length], arr[i % arr.length]);
            maxSoFar = Math.max(maxOfEnd, maxSoFar);
            if(i < arr.length)                              //求数组的和
                sum += arr[i];
        }
        while(sum > 0 && --k >= 2)
            maxSoFar = (maxSoFar + sum) % 1000000007;
        return (int) maxSoFar % 1000000007;
    }
}

注意
为什么 i < Math.min(k, 2) * arr.length ?即若 k >= 2 时,要算 2 个数组的最大连续子数列和,而不能只算 1 个再叠加 k - 1sum(arr)

假设数组 arr = [1, -2, 1], k = 2,此时若只算 1 个数组的最大连续子数列和,那么 maxSoFar = 1,而 sum(arr) = 0,所以最终结果为 1。但我们可以知道 [1, -2, 1, 1, -2, 1][1, 1] 是最大连续子数列和,所以结果有误,必须要考虑上结尾和开头结合的这种情况。

进一步证明
定义:数组 arr 的所有元素之和为 sum(arr)arr 重复 k 次表示为 carr(k)k >= 2)。那么 carr(k) 中所有的子数组可以写为:

  • formal(i, j) + carr(n),其中 n = 0, 1, 2, ..., k - 1 并且 0 <= i <= j <= len(arr) - 1
  • nonformal(i, j) + carr(m),其中 m = 0, 1, 2, ..., k - 2 并且 0 <= i <= j <= len(arr) - 1

显然,sum(arr) <= 0 时,所有长度超过 len(arr) 的子数组不可能比 formal(i, j)nonformal(i, j) 中的最大子数组大。而当 sum(arr) > 0 时:

  • formal(i, j) + carr(n) 之和可以写成 sum(formal(i, j)) + sum(arr) + r * sum(arr)
  • nonformal(i, j) + carr(m) 之和可以写成 sum(nonformal(i, j)) + r * sum(arr)

这里,0 <= r <= k - 2。所以问题的关键就在于求出 sum(formal(i, j)) + sum(arr)sum(nonformal(i, j)) 的最大值,而这个问题恰恰用 carr(2) Kadane \text{Kadane} Kadane 算法就可以求解。

在这里插入图片描述

通俗来讲,就是最终的最大连续子数列和分为如下几种情况

  • 常规型formal(i, j),不论 sum(arr) 大于0还是小于0,都与其一个单独数组的最大连续子数列和无关。
  • 非常规型nonformal(i, j),这个时候有两种情况
    • sum(arr) <= 0 && j == arr.length - 1,此时可能 sum(arr[0], ..., arr[m], nonformal(i, j) > nonformal(i, j)
    • sum(arr) > 0,此时必有 sum(arr) + nonformal(i, j) > nonformal(i, j)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值