正在学习Java,正确性不保证
1,题目:有1、2、3、4个数字,能组成多少个互不相同且无重复数字的三位数?都是多少?
程序分析:可填在百位、十位、个位的数字都是1、2、3、4。组成所有的排列后再去掉不满足条件的排列。
Digit.java
代码:
public class Digit {
public static void main(String[] args) {
int s = 0,count = 0;// 个数
for(int i = 1;i < 5;i++) {
for(int j = 1;j < 5;j++) {
for(int k = 1; k < 5;k++) {
if(i != j && j != k && k != i) {
s += k;
count++;
System.out.print(i*100+j*10+k);
}
}
}
}
System.out.println("总共能够组成" + count + "个数字!");
}
}
运行截图:
2,判断101-200之间有多少个素数,并输出所有素数。
只能被1和它本身整除的自然数为素数(质数)
Prime.java
代码:
public class Prime {
public static void main(String[] args) {
int count = 0;
for (int i = 101; i < 200; i+=2) {
for (int j = 2; j <= i ; j++) {
if (i % j == 0 && i != j) {
break;
}else if (i % j == 0) {
System.out.println(i);
count++;
}
}
}
System.out.println("一共有"+count+"个素数");
}
}
运行截图:
3,打印出所有的“水仙花数”,所谓“水仙花数”是指一个三位数,其各位 数字立方和等于该数本身。例如:153是一个“水仙花数”,因为 153=1的三次方+5的三次方+3的三次方。
Flower.java
Math.pow(a,3);
a×a×a
代码:
import java.util.Scanner;
public class Flower {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
System.out.println("输入一个三位数:");
int n = scanner.nextInt();
// 百位数 n=321 321/100 = 3
int i = n / 100;
// 十位数 321 % 100 = 21 / 10 =2
int j = n % 100 / 10;
// 个位数 321%100=21%10=1 453%100=53%10=3
int k = (n % 100) % 10;
if (Math.pow(i, 3)+Math.pow(j, 3)+Math.pow(k, 3) == n) {
System.out.println(n+"是水仙花数");
}else {
System.out.println(n+"不是水仙花数");
}
}
}
运行截图:
4,将一个正整数分解质因数。例如:输入90,打印出90=233*5。
对n进行分解质因数,应先找到一个最小的质数k,然后按下述步骤完成:
a)如果这个质数恰等于n,则说明分解质因数的过程已经结束,
打印出即可。
b) 如果n不等于i,i能被n整除,则应打印出i的值,并用n除以i的商,作为新的正整数n,重复执行第一步。
Divide.java
提示:如果一个自然数能写成两个自然数的乘积,那么这两个自然数就叫作原来那个数的因数。
import java.util.Scanner;
public class Divide {
public static int getInto() {
Scanner scanner = new Scanner(System.in);
System.out.println("请输入一个正整数:");
int n = scanner.nextInt();
return n;
}
public static void main(String[] args) {
int n = new Divide().getInto();
new Divide().fenjie(n);
}
public static void fenjie(int n) {
for (int i = 2; i <= n; i++) {
// 如果这个质数恰等于n,则说明分解质因数的过程已经结束,打印出即可。
if (n == i) {
System.out.println(i);
break;
}
// 如果n不等于i,i能被n整除,则应打印出i的值,并用n除以i的商,作为新的正整数n,重复执行第一步。
if (n != i && n % i == 0) {
n /= i;
System.out.println(i+"*");
i--;
}
}
}
}
运行截图:
System.out.println(i+"*");删掉ln ==> System.out.print(i+"*");
5,求任意两个正整数的最大公约数和(GCD)和最小公倍数(LCM)
辗转相除法的算法为:首先将 m除以 n(m>n)得余数 r,再用余数 r 去除原来的除数,得新的余数,重复此过程直到余数为 0时停止,此时的除数就是m 和 n的最大公约数。
求 m和 n的最小公倍数: m和 n的积除以(m和 n 的最大公约数)。
GcdLcm.java
代码:
import java.util.Scanner;
public class GcdLcm {
public static int zuiMax(int n,int m) {
if (m % n == 0) {
return n;
}else {
int r = m % n;
r = r % n;
return zuiMax(r,n);
}
}
public static int zuiMin(int n, int m) {
int min = (m * n) / zuiMax(n, m);
return min;
}
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
System.out.println("请输入两个正整数n和m:");
int n = scanner.nextInt();
int m = scanner.nextInt();
if (m < n) {
m = m + n;
n = m - n;
m = m - n;
}
int GCD = new GcdLcm().zuiMax(n, m);
int LCM = new GcdLcm().zuiMin(n, m);
System.out.println("最大公约数是:"+ GCD+",最小公倍数是:"+LCM);
}
}
运行截图:
6,求1000以内的完全数
若一个自然数,恰好与除去它本身以外的一切因数的和相等,这种数叫做完全数。
例如,6=1+2+3
28=1+2+4+7+14
496=1+2+4+8+16+31+62+124
先计算所选取的整数a(a的取值1~1000)的因数,将各因数累加于m,若m等于a,则可确认a为完全数
Perfect.java
代码:
public class Perfect {
static Integer num = 1000;
public static void fun(Integer num) {
for (int i = 1; i <= num; i++) {
int sum= 0;
for (int j = 1; j < i / 2 + 1; j++) {
if (i % j == 0) {
sum += j;
}
}
if (sum == i) {
System.out.println(i);
}
}
}
public static void main(String[] args) {
System.out.println(num + "以内的完全数有:");
fun(num);
}
}
运行截图: