练习

正在学习Java,正确性不保证

1,题目:有1、2、3、4个数字,能组成多少个互不相同且无重复数字的三位数?都是多少?

程序分析:可填在百位、十位、个位的数字都是1、2、3、4。组成所有的排列后再去掉不满足条件的排列。
Digit.java

代码:

public class Digit {
	public static void main(String[] args) {
		int s = 0,count = 0;// 个数
		for(int i = 1;i < 5;i++) {
			for(int j = 1;j < 5;j++) {
				for(int k = 1; k < 5;k++) {
					if(i != j && j != k && k != i) {
						s += k;	
						count++;
						System.out.print(i*100+j*10+k);
					}
				}
			}
		}
		System.out.println("总共能够组成" + count + "个数字!");
	}
}

运行截图:
在这里插入图片描述

2,判断101-200之间有多少个素数,并输出所有素数。

只能被1和它本身整除的自然数为素数(质数)
Prime.java

代码:

public class Prime {
	
	public static void main(String[] args) {
		int count = 0;
		for (int i = 101; i < 200; i+=2) {
			for (int j = 2; j <= i ; j++) {
				if (i % j == 0 && i != j) {
					break;
				}else if (i % j == 0) {
					System.out.println(i);
					count++;
				} 
				
			}
		}
		System.out.println("一共有"+count+"个素数");
	}
}

运行截图:
在这里插入图片描述

3,打印出所有的“水仙花数”,所谓“水仙花数”是指一个三位数,其各位 数字立方和等于该数本身。例如:153是一个“水仙花数”,因为 153=1的三次方+5的三次方+3的三次方。

Flower.java
Math.pow(a,3);
a×a×a

代码:

import java.util.Scanner;

public class Flower {
	
	public static void main(String[] args) {
		Scanner scanner = new Scanner(System.in);
		System.out.println("输入一个三位数:");
		int n = scanner.nextInt();
		// 百位数 n=321  321/100 = 3
		int i = n / 100;
		// 十位数  321 % 100 = 21 / 10 =2
		int j = n % 100 / 10;
		// 个位数 321%100=21%10=1   453%100=53%10=3
		int k = (n % 100) % 10;
		if (Math.pow(i, 3)+Math.pow(j, 3)+Math.pow(k, 3) == n) {
			System.out.println(n+"是水仙花数");
		}else {
			System.out.println(n+"不是水仙花数");
		}
	}
}

运行截图:
在这里插入图片描述

4,将一个正整数分解质因数。例如:输入90,打印出90=233*5。

对n进行分解质因数,应先找到一个最小的质数k,然后按下述步骤完成:
a)如果这个质数恰等于n,则说明分解质因数的过程已经结束,
打印出即可。
b) 如果n不等于i,i能被n整除,则应打印出i的值,并用n除以i的商,作为新的正整数n,重复执行第一步。
Divide.java

提示:如果一个自然数能写成两个自然数的乘积,那么这两个自然数就叫作原来那个数的因数。
import java.util.Scanner;

public class Divide {
	
	public static int getInto() {
		Scanner scanner = new Scanner(System.in);
		System.out.println("请输入一个正整数:");
		int n = scanner.nextInt();
		return n;
	}
	
	public static void main(String[] args) {
		int n = new Divide().getInto();
		new Divide().fenjie(n);
	}
	
	public static void fenjie(int n) {
			for (int i = 2; i <= n; i++) {
				// 如果这个质数恰等于n,则说明分解质因数的过程已经结束,打印出即可。
				if (n == i) {
					System.out.println(i);
					break;
				}
				//  如果n不等于i,i能被n整除,则应打印出i的值,并用n除以i的商,作为新的正整数n,重复执行第一步。
				if (n != i && n % i == 0) {
					n /= i;
					System.out.println(i+"*");
					i--;
				}		
			}
	 }
}

运行截图:
在这里插入图片描述
System.out.println(i+"*");删掉ln ==> System.out.print(i+"*");
在这里插入图片描述

5,求任意两个正整数的最大公约数和(GCD)和最小公倍数(LCM)

辗转相除法的算法为:首先将 m除以 n(m>n)得余数 r,再用余数 r 去除原来的除数,得新的余数,重复此过程直到余数为 0时停止,此时的除数就是m 和 n的最大公约数。
求 m和 n的最小公倍数: m和 n的积除以(m和 n 的最大公约数)。
GcdLcm.java
代码:

import java.util.Scanner;

public class GcdLcm {
	
	public static int zuiMax(int n,int m) {
			if (m % n == 0) {
				return n;
			}else {
				int r = m % n;
				r = r % n;
				return zuiMax(r,n);
			}		
	}
	
	public static int zuiMin(int n, int m) {
		int min = (m * n) / zuiMax(n, m);
		return min;
	}
	
	public static void main(String[] args) {
		Scanner scanner = new Scanner(System.in);
		System.out.println("请输入两个正整数n和m:");
		int n = scanner.nextInt();
		int m = scanner.nextInt();
		if (m < n) {
			 m = m + n;
		     n = m - n;
		     m = m - n;
		}
		int GCD = new GcdLcm().zuiMax(n, m);
		int LCM = new GcdLcm().zuiMin(n, m);
		System.out.println("最大公约数是:"+ GCD+",最小公倍数是:"+LCM);
	}
}

运行截图:
在这里插入图片描述

6,求1000以内的完全数

若一个自然数,恰好与除去它本身以外的一切因数的和相等,这种数叫做完全数。
例如,6=1+2+3
28=1+2+4+7+14
496=1+2+4+8+16+31+62+124
先计算所选取的整数a(a的取值1~1000)的因数,将各因数累加于m,若m等于a,则可确认a为完全数
Perfect.java

代码:

public class Perfect {
	
	static Integer num = 1000;
	
	public static void fun(Integer num) {
		for (int i = 1; i <= num; i++) {
			int sum= 0;
			for (int j = 1; j < i / 2 + 1; j++) {
				if (i % j == 0) {
					sum += j; 
				}
			}
			if (sum == i) {
				System.out.println(i);
			}
		}
	}
	
	public static void main(String[] args) {
		System.out.println(num + "以内的完全数有:");
		fun(num);
	}
}

运行截图:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值