详解pandas to_dict()的参数形式

pandas 中的to_dict 可以对DataFrame类型的数据进行转换
可以选择六种的转换类型,分别对应于参数 ‘dict’, ‘list’, ‘series’, ‘split’, ‘records’, ‘index’,下面逐一介绍每种的用法

0、原始数据

import pandas as pd

data = pd.DataFrame([['3rd', 31.194181, 'UNKNOWN', 'UNKNOWN', 'male'],
                     ['1rd', 31.194181, 'Cherbourg', 'Paris, France', 'female'],
                     ['3rd', 31.194181, 'UNKNOWN', 'UNKNOWN', 'male'],
                     ['3rd', 32.000000, 'Southampton', 'Foresvik, Norway Portland, ND', 'male'],
                     ['3rd', 31.194181, 'UNKNOWN', 'UNKNOWN', 'male'],
                     ['2rd', 41.000000, 'Cherbourg', 'New York, NY', 'male'],
                     ['2rd', 48.000000, 'Southampton', 'Somerset / Bernardsville, NJ', 'female'],
                     ['3rd', 26.000000, 'Southampton', 'UNKNOWN', 'male'],
                     ['3rd', 19.000000, 'Southampton', 'England', 'male'],
                     ['2rd', 31.194181, 'Southampton', 'Petworth, Sussex', 'male']],
                    index=['1086', '12', '1036', '833', '1108', '562', '437', '663', '669', '507'],
                    columns=['pclass', 'age', 'embarked', 'home.dest', 'sex'])
print(data)

输出结果:

     pclass        age     embarked                      home.dest     sex
1086    3rd  31.194181      UNKNOWN                        UNKNOWN    male
12      1rd  31.194181    Cherbourg                  Paris, France  female
1036    3rd  31.194181      UNKNOWN                        UNKNOWN    male
833     3rd  32.000000  Southampton  Foresvik, Norway Portland, ND    male
1108    3rd  31.194181      UNKNOWN                        UNKNOWN    male
562     2rd  41.000000    Cherbourg                   New York, NY    male
437     2rd  48.000000  Southampton   Somerset / Bernardsville, NJ  female
663     3rd  26.000000  Southampton                        UNKNOWN    male
669     3rd  19.000000  Southampton                        England    male
507     2rd  31.194181  Southampton               Petworth, Sussex    male

1、选择参数orient=’dict’ ,可以看成是一种双重字典结构(columns是外层键,index是内层键)

形成结构{column -> {index -> value}}
data_dict = data.to_dict(orient='dict')
print(data_dict)

输出结果为:

{
   
  'pclass': {
   
    '1086': '3rd',
    '12': '1rd',
    '1036': '3rd',
    '833': '3rd',
    '1108': '3rd',
    '562': '2rd',
    '437': '2rd',
    '663': '3rd',
    '669': '3rd',
    '507': '2rd'
  },
  'age': {
   
    '1086': 31.194181,
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值