洛谷P1350车的放置题解
一个简单的DP。
状态转移方程:f[j][i] = (f[j - 1][i] + f[j - 1][i - 1] * (v[j] - i + 1)) %100003;
f[j][[i]代表到第j列,放置了i个车子总共的方案数。
此题有坑:题目所给的图形是左边高右边低,但是我在递推的过程中发现前面会对后面有影响,例如: 第一列高度为2,第二列高度为1,假如车子放在了第一列的最高的部分,那么第二列就不需要减去前面放的车子数(因为肯定不在同一行,画一下就知道了),导致减的多,方案数变少。改成左边低右边高就行了,这样后面的必须要减去前面的车子数,前面的对后面的无影响。或者倒着递推也是可以的!
/*
DP
*/
#include<cstdio>
#include<iostream>
using namespace std;
int a, b, c, d, k, i, j;
int v[3000], f[3000][3000];
int main()
{
scanf("%d%d%d%d%d", &a, &b, &c, &d, &k);
/*for (i = 1; i <= a; i++){
f[i][0] = 1;
v[i] = b + d;
}
for (i = a + 1; i <= a + c; i++){
f[i][0] = 1;
v[i] = d;
}*/
for (i = 1; i <= c; i++){
f[i][0] = 1;
v[i] = d;
}
for (i = c + 1; i <= a + c; i++){
f[i][0] = 1;
v[i] = b + d;
}
f[0][0] = 1;
for (j = 1; j <= a + c; j++)
for (i = 1; i <= min(k, j); i++){
f[j][i] = (f[j - 1][i] + f[j - 1][i - 1] * (v[j] - i + 1)) %100003;
// cout<<f[1][1]<<"-->"<<f[1][2]<<"-->"<<f[2][2]<<endl;
}
printf("%d", f[a + c][k] % 100003);
return 0;
}