洛谷P1350题解

洛谷P1350车的放置题解
一个简单的DP。
状态转移方程:f[j][i] = (f[j - 1][i] + f[j - 1][i - 1] * (v[j] - i + 1)) %100003;
f[j][[i]代表到第j列,放置了i个车子总共的方案数。
此题有坑:题目所给的图形是左边高右边低,但是我在递推的过程中发现前面会对后面有影响,例如: 第一列高度为2,第二列高度为1,假如车子放在了第一列的最高的部分,那么第二列就不需要减去前面放的车子数(因为肯定不在同一行,画一下就知道了),导致减的多,方案数变少。改成左边低右边高就行了,这样后面的必须要减去前面的车子数,前面的对后面的无影响。或者倒着递推也是可以的!

/*
DP 
*/ 
#include<cstdio>
#include<iostream>
using namespace std;
int a, b, c, d, k, i, j;
int v[3000], f[3000][3000]; 
int main()
{
	scanf("%d%d%d%d%d", &a, &b, &c, &d, &k);
	/*for (i = 1; i <= a; i++){
		f[i][0] = 1;
		v[i] = b + d;
	}
	for (i = a + 1; i <= a + c; i++){
		f[i][0] = 1;
		v[i] = d;
	}*/
	for (i = 1; i <= c; i++){
		f[i][0] = 1;
		v[i] = d;
	}
	for (i = c + 1; i <= a + c; i++){
		f[i][0] = 1;
		v[i] = b + d;
	}
	f[0][0] = 1;
	for (j = 1; j <= a + c; j++)
	  for (i = 1; i <= min(k, j); i++){
	  	 f[j][i] = (f[j - 1][i] + f[j - 1][i - 1] * (v[j] - i + 1)) %100003;
	    // cout<<f[1][1]<<"-->"<<f[1][2]<<"-->"<<f[2][2]<<endl;
	  }  
	printf("%d", f[a + c][k] % 100003);
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值