笔记
文章平均质量分 55
清纯世纪
知识的搬运工
展开
-
GitHub上传自己的项目
进入您的 GitHub 主页,点击右上角的加号图标,选择 "New Repository"。默认情况下,GitHub 仓库的主分支名称是 "master",但为了更加包容和尊重的命名,GitHub 已经将默认分支更改为 "main"。生成成功后,去对应目录C:\Users\Y\ .ssh里(Y为电脑用户名,每个人不同)用记事本打开id_rsa.pub,得到ssh key公钥。然后打开SSH keys菜单, 点击Add SSH key新增密钥,填上标题,跟仓库保持一致吧,好区分。原创 2024-11-04 22:09:16 · 742 阅读 · 0 评论 -
conda虚拟环境中安装cuda和cudnn
找到自己想要的cuda版本后,先把cuda下载到本地。首先使用conda activate name命令把conda环境激活到目标环境。首先安装与cuda相匹配的pytorch和torchvision包,可以去。执行如下命令进行安装,因为是通过本地安装的,所以需要写明本地包的路径。执行后的结果如图所示,图中标出了cudnn所对应的cuda版本号位置。附:直接使用conda install安装。复制你想要版本的cudnn的下载地址,使用。原创 2024-08-24 11:45:15 · 2904 阅读 · 0 评论 -
basicsr库的安装解决方法
中找到,所以可以分别安装。先利用别的镜像安装依赖,在安装basicsr==1.4.2。在安装basicsr==1.4.2时候,发现安装始终出错。发现是basicsr的依赖tb-nightly无法。原创 2024-08-17 18:08:20 · 823 阅读 · 0 评论 -
RGB图像的读取与保存
必须是np.uint8类型才可以,否则报错。原创 2024-08-03 16:23:53 · 267 阅读 · 0 评论 -
修改网络的结构用于预训练
passpass。原创 2024-06-24 10:07:25 · 480 阅读 · 0 评论 -
Windows和Linux系统上的Mamba_ssm环境配置
DockHub仓库地址:https://hub.docker.com/repository/docker/kom4cr0/cuda11.7-pytorch1.13-mamba1.1.1/general。最直接的安装,可以利用网友配置好的Docker环境 -> 直接使用Mamba基础环境docker镜像。同样的,如果cuda版本不对应,需要在虚拟环境中安装(创建虚拟环境并且。安装该文件网上有几种方法,下面我将一一展示,可以尝试一下(安装该文件网上有几种方法,下面我将一一展示,可以尝试一下(原创 2024-06-17 22:12:18 · 6904 阅读 · 17 评论 -
一款可代替Typora的Markdown编辑器神器(完全开源免费)
MarkText:完全开源免费(MIT License)Markdown编辑器神器。支持 Windows、macOS 和 Linux 系统,使用户能够在不同的操作系统上使用相同的编辑工具。原创 2024-03-26 10:36:26 · 921 阅读 · 0 评论 -
Pandoc下载和安装笔记
Pandoc 的作者是 John MacFarlane,John MacFarlane是美国加州大学伯克利分校的哲学系的一位教授。编写Pandoc 用来生成讲义、课件和网站等。程序开源免费,目前以 GPL 协议托管在网站上。原创 2024-03-25 18:56:14 · 3954 阅读 · 1 评论 -
Typora结合PicGo + Github搭建个人图床
注意:如果需要指定上传到哪个分支,此时需要在自定义域名后面使用@ + 分支名,如果是仓库默认的分支,可以省略指定分支这一步。然后,我们能够在相册中看到我们已经上传的图片,可以查看、复制已经上传的图片的URL,同时也可以将上传的图片删除。配置完成后,切换到刚刚配置好的图床,然后手动上传图片试试:可以点击’点击上传’,也可以通过拖拽的方式进行上传。创建完毕之后,生成的Token是你的账户下的github服务器的令牌,用记事本记录下来,后面会用到。在上传服务内选择PicGo,并选择PicGo.exe的路径。原创 2024-03-25 14:14:39 · 1377 阅读 · 0 评论 -
基于OpenCV的图像分割(分水岭算法和GrabCut)
该算法也有不完美的地方,如果背景比较复杂或者背景和目标的相似度很大,那分割效果就不好,而且该算法的速度较慢。2、如果增加额外的用户交互(由用户指定一些像素属于目标),那么效果会更好。原创 2024-01-22 15:53:23 · 2156 阅读 · 0 评论 -
灰度图像的自动阈值分割
在cv2.threshold函数中,我们设置的两个数值,第一个就是阈值(OTSU会自动学习,设置多少无所谓),根据该阈值进行分割;第二个是将二值图像中的最大值设置为多少,即设置5,那么的到的二值图像就是0和5。一种基本的二值化方法,它使用一个用户指定的固定阈值将图像中的像素分为两类:高于阈值和低于阈值。简而言之,像素值大于阈值的被设为一个值(通常是255),而像素值小于阈值的被设为另一个值(通常是0)。即:高于threshold_value的设置为该值,也就是最后二值图像中的最大值。两种实现结果基本一致。原创 2024-01-22 15:07:52 · 1561 阅读 · 0 评论 -
列表的extend和append两种方法的区别(np)
是 Python 列表对象的方法,它们用于在列表末尾添加新的元素。整体作为一个元素被添加到了。中的元素被逐个添加到了。原创 2023-12-18 13:16:13 · 200 阅读 · 0 评论 -
python删除某些变量,以降低内存开销
【代码】python删除某些变量,以降低内存开销。原创 2023-11-28 18:58:37 · 129 阅读 · 0 评论 -
剔除数据中的异常值(python实现)
3σ原则,又叫拉依达原则,它是指假设一组检测数据中只含有随机误差,需要对其进行计算得到标准偏差,按一定概率确定一个区间,对于超过这个区间的误差,就不属于随机误差而是粗大误差,需要将含有该误差的数据进行剔除。其局限性:仅局限于对正态或近似正态分布的样本数据处理,它是以测量次数充分大为前提(样本>10),当测量次数少的情形用准则剔除粗大误差是不够可靠的。一般可以认为,数据Y的取值几乎全部集中在(μ-3σ,μ+3σ)区间内,超出这个范围的可能性仅占不到0.3%,这些超出该范围的数据可以认为是异常值。原创 2023-09-19 23:19:22 · 2203 阅读 · 0 评论 -
R 语言的安装教程
注意:先安装R,再安装Rstudio等,软件的安装路径不能有中文。注:我安装时,上述三个软件全部安装在同一个目录。然后选择与上面下载的R版本相对应的版本即可。注意:安装目录不能是中文路径。然后一直下一步安装即可。找到中国镜像,下载快。进入镜像后,点击这里。原创 2023-09-16 11:47:17 · 20844 阅读 · 5 评论 -
pandas(pd)数据的一些操作( np数据转成pd数据、pd数据保存csv文件)
【代码】pandas(pd)数据的一些操作( np数据转成pd数据、pd数据保存csv文件)原创 2023-08-20 11:09:07 · 879 阅读 · 0 评论 -
清除pip安装库时的缓存
在使用Python库时,如果之前已经下载过该库,pip会默认使用缓存来安装库,而不是重新从网络上下载。缓存文件通常存储在用户目录下的缓存文件夹中,具体位置因操作系统和Python版本而异。以下是一些常见的Python版本和操作系统下缓存文件的默认位置:其中,username是你的用户名,而pip 文件夹是 pip 的缓存目录。原创 2023-08-12 18:29:40 · 6816 阅读 · 0 评论 -
Torch中item()和items()的用法详解与区别
items()的作用是把字典中的每对key和value组成一个元组,并把这些元祖放在列表中返回。张量(即只取一个元素才不会报错)的元素值并返回该值,保持该元素类型不变。由此可以看出使用item()函数取出的元素值的精度更高,所以在求。等时我们一般用item()item()的作用是取出。原创 2023-08-12 11:57:33 · 1273 阅读 · 0 评论 -
利用sklearn 实现线性回归、非线性回归
【代码】利用sklearn 实现线性回归、非线性回归。原创 2023-07-27 19:25:20 · 1230 阅读 · 1 评论 -
Python计算统计分析MSE 、RMSE、MAE、R2评估指标
均方根误差(Root Mean Square Error),其实就是MSE加了个根号,这样数量级上比较直观,比如RMSE=10,可以认为回归效果相比真实值平均相差10。误差越大,该值越大。所以要想决定系数R2越接近1,必须满足MSE越小,也就是真实值与预测值相差不大,也就是模型拟合程度高,同时var方差越大,也就是我们的样本离散程度大,对应的我们实际采样过程中,就是要求样本是随机性,以及全面性,覆盖度广。方差(variance)的计算公式:S2=1/n [(x1-X)2+(x2-X)2+(x3-X)2+…原创 2023-07-27 18:39:51 · 9417 阅读 · 2 评论 -
Python显示循环代码的进度条
alive_progress是一个动态的实时显示进度条库。进度条,可以在Python长循环中添加一个进度提示信息。tqdm是一个快速,可扩展的。原创 2023-07-27 15:27:00 · 2792 阅读 · 0 评论 -
python中去除字符串中指定的字符
old是原字符串中的字符,new是需要替换为的新字符串,max是最大匹配次数,匹配时从左到右最多max次。一般情况下不设置max的值,默认全部替换。更多:a.lstrip()删除ss字符串开头处的指定字符,a.rstrip()删除ss结尾处的指定字符。基本用法:ss.replace(old, new[, max])原创 2023-07-27 14:06:44 · 3004 阅读 · 0 评论 -
【Window系统】安装FFmpeg教程
到这里ffmpeg的配置就完成了。我们调用命令行(windows+R输入cmd)输入“ffmpeg –version”,如果出现以下结果则说明配置成功。记得点下方的确定,再关闭当前窗口再点确定,这样才能保存,千万记得不能点击取消。选择新建,把刚刚复制的bin路径粘贴进去,点击确定。原创 2023-07-20 00:27:28 · 4772 阅读 · 0 评论 -
PyCharm 常用快捷键
目录1、代码编辑快捷键2、搜索/替换快捷键3、代码运行快捷键4、代码调试快捷键5、应用搜索快捷键6、代码重构快捷键7、动态模块快捷键8、导航快捷键9、通用快捷键原创 2023-07-17 11:08:27 · 2222 阅读 · 0 评论 -
Python判断一个字符串中是否有已知字符
【代码】Python判断一个字符串中是否有已知字符。原创 2023-05-06 10:02:16 · 160 阅读 · 0 评论 -
python进行 t 检验
主要是针对的假设检验,即检验样本的均值与某个值的差异,或者两个样本的均值是否有差异等。其,并且在情况下也可以进行检验。python进行t检验使用scipy包的stats模块。原创 2022-11-29 17:56:35 · 3849 阅读 · 0 评论 -
深度学习模型的推理速度统计
mean_syn表示检测一张图片的耗时;mean_fps表示一秒内检测图片的数量。使用torchstat库。原创 2022-11-29 17:40:47 · 1048 阅读 · 3 评论 -
网络模型的参数量和FLOPs的计算 Pytorch
如果把torchstat包中的一行程序进行一点点改动,那么这个包可以用来统计全连接神经网络的参数量和计算量。当然手动计算全连接神经网络的参数量和计算量也很快 =_=。进入torchstat源代码之后,如下图所示,注释掉圈红的地方,就可以用torchstat包统计全连接神经网络的参数量和计算量了。包,帮助我们统计模型的parameters和FLOPs。如果不修改这个包里面的一些代码,那么这个包只适用于输入为3通道的图像的模型。在实际操作中,我们可以调用。原创 2022-11-07 11:55:27 · 10001 阅读 · 3 评论 -
NoteExpress解决提示“尝试从一个其他来源的数据库.....”的可行方法
如图所示,原因应该是引用的文献中有些是直接从其他数据库中复制过来的,但是没有同时打开复制过来的数据库,所以方法1就是把你用过的所有数据库都打开,然后更新。方法2的话就是把极速版插件换成经典版,然后用经典版直接更新样式即可。(注意:这里必须要完全卸载极速版插件,不然安装经典版后必定报错,删除C:\Users\用户名\AppData\Roaming\Microsoft\Word\STARTUP下的NEWebWordAddin.dotm即可正常安装使用 )原创 2022-11-06 15:00:45 · 2045 阅读 · 0 评论 -
假设实验之t检验
【代码】假设实验之t检验。原创 2022-11-05 20:49:07 · 148 阅读 · 0 评论 -
检验数据是否符合正态分布
p值大于0.05为正太分布。原创 2022-11-05 18:07:34 · 3581 阅读 · 0 评论 -
Pytorch中的nn.Unfold()和nn.Fold()详解
描述:pytorch中的nn.Unfold()函数,在图像处理领域,经常需要用到卷积操作,但是有时我们只需要在图片上进行滑动的窗口操作,将图片切割成patch,而不需要进行卷积核和图片值的卷积乘法操作。这是就需要用到nn.Unfold()函数,该函数是从一个batch图片中,提取出滑动的局部区域块,也就是卷积操作中的提取kernel filter对应的滑动窗口。需要注意的是,如果滑动窗口有重叠,那么重叠部分相加。同时,如果原来的图像不够划分的话就会舍去。该函数是nn.Unfold()函数的逆操作。原创 2022-10-10 21:01:53 · 1727 阅读 · 1 评论 -
谷歌翻译退出中国后如何恢复 Chrome 浏览器翻译的正常使用
由于 hosts 文件属于系统文件,因此需要用到系统管理员身份。最后像下面这样,将你所获取到的 IP 和 Google 翻译 API 的域名组合成一条 hosts 规则,并将其添加到 hosts 文件中的最后一行,保存文件后插件即可恢复正常使用。在 Windows 系统中获取可用 IP 的方法为,打开“如果联网正常,可以获取到类似下面这样的信息,其中。原创 2022-10-05 16:31:07 · 4119 阅读 · 4 评论 -
win10系统修改hosts文件提示没有权限的解决办法
起因:在修改C:\Windows\System32\drivers\etc\hosts文件时,提示:解决了问题。原创 2022-10-05 16:23:27 · 1822 阅读 · 1 评论 -
随机森林特征重要性
【代码】随机森林特征重要性。原创 2022-09-28 16:07:46 · 1035 阅读 · 0 评论 -
查看一个人发表的SCI数量
访问网址:原创 2022-08-12 18:26:18 · 2161 阅读 · 2 评论 -
python库的搜索
https://pypi.org/原创 2022-08-06 09:46:35 · 267 阅读 · 0 评论 -
Windows安装tar.gz格式文件的方法
首先下载tar.gz文件,比如我准备安装python docx的库文件:python-docx-0.8.6.tar.gz,下载后是一个tar.gz文件,解压软件解压,解压后的目录里有一个setup.py文件,这时,切换到该目录,执行命令python.exe setup.py install。......原创 2022-08-06 09:42:09 · 7058 阅读 · 0 评论 -
Pytorch代码调试工具--torchsnooper
示例: 运行后出现以下问题: 解决办法:使用torchsnooper,在代码前加入import torchsnooper 和@torchsnooper.snoop() 运行将会出现以下内容: 从提示中可以看出Y是一个在CPU上的tensor, 因此可以将y改为:y = torch.zeros(6, device='cuda')再次运行将会出现新的问题: scalar的类型应为int,但却用的是long。在上方torchsnooper输出的提示中可以看原创 2022-06-29 20:16:36 · 406 阅读 · 0 评论 -
Visio 自定义组合形状、颜色填充
1、检查visio软件中是否有“开发工具”选项,填充过程中需要用到。如果没有的话需要如下步骤添加上:文件>>>选项>>>自定义功能区>>>主选项卡>>>开发工具2、使用直线绘制如图所示的图形(自己绘制的,不是用现成的模板) 3、选中所有图形,点击 开发工具>>>组合4、组合后,点击 操作 里的 拆分 ,然后在选择 连接(全选后连接)5、最后填充即可...原创 2022-06-10 09:13:05 · 8037 阅读 · 0 评论