最大k乘积问题(动态规划)

本文探讨了如何使用动态规划解决最大K乘积问题。该问题要求将一个n位十进制整数X划分为K段,求这K个整数的最大乘积。算法输入为X、K和n,输出为X的最大K乘积。文章提供了一段代码来实现这一算法,并给出了运行结果。
摘要由CSDN通过智能技术生成

最大k乘积问题(动态规划)
问题描述:设X是一个n位十进制整数,如果将X划分为K段,则可得到K个整数,这K个整数的乘积称为X的一个K乘积。请设计算法并编程实现,对于给定的X 和K,求出X的最大K乘积。
输入:X,K,n
输出:X的最大K乘积。
代码:

#include<iostream>
#include<fstream>
using namespace std;

void getnumber(int number[20], int num, int n)
{
	int b = 0;
	for (int a = n - 1; a >= 0; a--)
	{
		b = num % 10;
		num = num / 10;
		number[a] = b;
	}
	return;
}

int countnumber(int p, int q, int* number)
{
	int newnumber = 0;
	for (int a = p; a <= q; a++)
	{
		newnumber = newnumber * 10 + number[a];
	}
	return newnumber;
}
int main()
{
	int k; int n; int num;
	int number[20];
	int product[20][20];
	ifstream f1("D:\\Data\\1.txt");
	f1 >> n;
	f1 >> k;
	f1 >> num;
	getnumber(number, num, n);
	if (k == 1)
	{
		cout << "最大k乘积为" << num << "\n&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值