岛屿数量
给你一个由 ‘1’(陆地)和 ‘0’(水)组成的的二维网格,请你计算网格中岛屿的数量。
岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。
此外,你可以假设该网格的四条边均被水包围。
示例 1:
输入:
11110
11010
11000
00000
输出: 1
示例 2:
输入:
11000
11000
00100
00011
输出: 3
解释: 每座岛屿只能由水平和/或竖直方向上相邻的陆地连接而成。
(来源:力扣(LeetCode))
思路:采用深度优先搜索方法,把网格看成一个无向图。
DFS主要思路是从图中一个未访问的顶点 V 开始,沿着一条路一直走到底,然后从这条路尽头的节点回退到上一个节点,再从另一条路开始走到底…,不断递归重复此过程,直到所有的顶点都遍历完成。
具体步骤:
当走到1的格子时,搜索整个岛屿。搜索四面相邻的格子,如果坐标合法且是陆地,就继续搜索;
为了避免重复搜索,我们将搜索过的陆地标记为0;
每遇到一个陆地就进行深度优先搜索,搜索了几次就有几个岛屿。
class Solution {
public int numIslands(char[][] grid) {
int count = 0;
if(grid.length == 0 || grid[0].length == 0) {
return 0;
}
for(int i = 0; i < grid.length; i++) {
for(int j = 0; j < grid[0].length; j++) {
if(grid[i][j] == '1') {
dfs(grid, i, j);
count++;
}
}
}
return count;
}
void dfs(char[][] grid, int i, int j) {
if (!(0 <= i && i < grid.length && 0 <= j && j < grid[0].length)) {
return;
}
if(!(grid[i][j] == '1')) {
return;
}
grid[i][j] = '0';
dfs(grid, i - 1, j);
dfs(grid, i + 1, j);
dfs(grid, i, j - 1);
dfs(grid, i, j + 1);
}
}