137. 只出现一次的数字 II
给定一个非空整数数组,除了某个元素只出现一次以外,其余每个元素均出现了三次。找出那个只出现了一次的元素。
说明:
你的算法应该具有线性时间复杂度。 你可以不使用额外空间来实现吗?
示例 1:
输入: [2,2,3,2]
输出: 3
示例 2:
输入: [0,1,0,1,0,1,99]
输出: 99
(来源:力扣(LeetCode))
思路:因为题目要求不使用额外空间来实现,所以最合适的方法是位运算。
对于出现三次的数字,各二进制位出现的次数都是 3 的倍数。
因此,统计所有数字的各二进制位中 1 的出现次数,并对 3求余,结果则为只出现一次的数字。例如示例1,输入[2,2,3,2] :
2 | 0 0 1 0 |
---|---|
2 | 0 0 1 0 |
2 | 0 0 1 0 |
3 | 0 0 1 1 |
各二进制中1的个数 | 0 0 4 1 |
对3求余 | 0 0 1 1 = 3 |
对于所有数字中的某二进制位 1 的个数,存在 3 种状态,即对 3 余数为 0, 1, 2 。
若输入二进制位 1 ,则状态按照以下顺序转换:0 —>1—>2—>0—>1—>2⋯⋯
若输入二进制位 0 ,则状态不变。
由于二进制只能表示 0, 1,因此需要使用两个二进制位来表示 3个状态。设此两位分别为 twos , ones ,则状态转换变为:00→01→10→00→⋯⋯
如图所示:
我们已知,异或运算:x ^ 1 = ~x, x ^ 0 = x ,与运算:x & 1 = x, x & 0 = 0。
接下来计算ones:
设当前状态为 twos ones ,此时输入二进制位 n.
if twos == 0:
if n == 0:
ones = ones
if n == 1:
ones = ~ones
if twos == 1:
ones = 0
引入异或运算,简化得:
if twos == 0:
ones = ones ^ n
if twos == 1:
ones = 0
再引入与运算,简化得:
ones = ones ^ n & ~twos
计算twos方法:
由于是先计算 ones ,因此应在新 ones的基础上计算 twos 。
计算ones之前的状态图 | 00→01→10→00→⋯ |
---|---|
计算完ones后新的状态图 | 01→00→10→01→⋯ |
将twos ones对调,得到 | 10→00→01→10→⋯ |
调整后可得 | 00→01→10→00→⋯ |
计算得twos = twos ^ n & ~ones
遍历完所有数字后,各二进制位都处于状态 00 和状态 01 ,而此两状态是由 ones 来记录的(此两状态下 twos 恒为 0 ),因此返回 ones 即可。
class Solution {
public int singleNumber(int[] nums) {
int ones = 0, twos = 0;
for (int num : nums) {
ones = ones ^ num & ~twos;
twos = twos ^ num & ~ones;
}
return ones;
}
}