题解三十八

100 篇文章 0 订阅

137. 只出现一次的数字 II

给定一个非空整数数组,除了某个元素只出现一次以外,其余每个元素均出现了三次。找出那个只出现了一次的元素。

说明:
你的算法应该具有线性时间复杂度。 你可以不使用额外空间来实现吗?

示例 1:

输入: [2,2,3,2]
输出: 3

示例 2:

输入: [0,1,0,1,0,1,99]
输出: 99
(来源:力扣(LeetCode))

思路:因为题目要求不使用额外空间来实现,所以最合适的方法是位运算。
对于出现三次的数字,各二进制位出现的次数都是 3 的倍数。
因此,统计所有数字的各二进制位中 1 的出现次数,并对 3求余,结果则为只出现一次的数字。例如示例1,输入[2,2,3,2] :

20 0 1 0
20 0 1 0
20 0 1 0
30 0 1 1
各二进制中1的个数0 0 4 1
对3求余0 0 1 1 = 3

对于所有数字中的某二进制位 1 的个数,存在 3 种状态,即对 3 余数为 0, 1, 2 。
若输入二进制位 1 ,则状态按照以下顺序转换:0 —>1—>2—>0—>1—>2⋯⋯
若输入二进制位 0 ,则状态不变。
由于二进制只能表示 0, 1,因此需要使用两个二进制位来表示 3个状态。设此两位分别为 twos , ones ,则状态转换变为:00→01→10→00→⋯⋯
如图所示:

在这里插入图片描述
我们已知,异或运算:x ^ 1 = ~x, x ^ 0 = x ,与运算:x & 1 = x, x & 0 = 0。
接下来计算ones:
设当前状态为 twos ones ,此时输入二进制位 n.
if twos == 0:
if n == 0:
ones = ones
if n == 1:
ones = ~ones
if twos == 1:
ones = 0
引入异或运算,简化得:
if twos == 0:
ones = ones ^ n
if twos == 1:
ones = 0
再引入与运算,简化得:
ones = ones ^ n & ~twos

计算twos方法:
由于是先计算 ones ,因此应在新 ones的基础上计算 twos 。

计算ones之前的状态图00→01→10→00→⋯
计算完ones后新的状态图01→00→10→01→⋯
将twos ones对调,得到10→00→01→10→⋯
调整后可得00→01→10→00→⋯

计算得twos = twos ^ n & ~ones
遍历完所有数字后,各二进制位都处于状态 00 和状态 01 ,而此两状态是由 ones 来记录的(此两状态下 twos 恒为 0 ),因此返回 ones 即可。

class Solution {
    public int singleNumber(int[] nums) {
        int ones = 0, twos = 0;

        for (int num : nums) {
            ones = ones ^ num & ~twos;
            twos = twos ^ num & ~ones;
        }
        return  ones;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值