一棵二叉搜索树可被递归地定义为具有下列性质的二叉树:对于任一结点,
其左子树中所有结点的键值小于该结点的键值;
其右子树中所有结点的键值大于等于该结点的键值;
其左右子树都是二叉搜索树。
所谓二叉搜索树的“镜像”,即将所有结点的左右子树对换位置后所得到的树。
给定一个整数键值序列,现请你编写程序,判断这是否是对一棵二叉搜索树或其镜像进行前序遍历的结果。
输入格式:
输入的第一行给出正整数 N(≤1000)。随后一行给出 N 个整数键值,其间以空格分隔。
输出格式:
如果输入序列是对一棵二叉搜索树或其镜像进行前序遍历的结果,则首先在一行中输出 YES ,然后在下一行输出该树后序遍历的结果。数字间有 1 个空格,一行的首尾不得有多余空格。若答案是否,则输出 NO。
输入样例 1:
7
8 6 5 7 10 8 11
输出样例 1:
YES
5 7 6 8 11 10 8
思路:假设它是二叉搜索树,根据二叉搜索树的性质将已知的前序转换为后序,转换过程中,如果发现最后输出的后序数组长度不为n,那就设isMirror为true,然后清空后序数组,重新再转换一次(根据镜面二叉搜索树的性质),如果依旧转换后数组大小不等于n,就输出no否则输出yes
#include<bits/stdc++.h>
typedef long long ll;
using namespace std;
int n;
const int N = 1005;
int arr[N];
bool isMirror = false;
vector<int>vc;
void getPos(int root,int tail){
if(root>tail)
return;
int l = root+1,r=tail;
if(!isMirror){
while (arr[l]<arr[root]&&l<=tail) {
l++;
}
while (arr[r]>=arr[root]&&r>root) {
r--;
}
}
else{
while (arr[l]>=arr[root]&&l<=tail) {
l++;
}
while (arr[r]<arr[root]&&r>root) {
r--;
}
}
if(l!=r+1)
return;
getPos(root+1, r);
getPos(r+1, tail);
vc.push_back(arr[root]);
}
void solve(){
cin>>n;
for(int i =1;i<=n;i++){
cin>>arr[i];
}
getPos(1, n);
if(vc.size() != n) {
isMirror = true;
vc.clear();
getPos(1, n );
}
if(vc.size() == n) {
printf("YES\n%d", vc[0]);
for(int i = 1; i < n; i++)
printf(" %d", vc[i]);
} else {
printf("NO");
}
}
signed main()
{
// ios::sync_with_stdio(0);
// cin.tie(0);
// cout.tie(0);
int __ = 1;
//cin>>__;
//cin.ignore();
while (__--) {
//init();
solve();
}
}