机器学习(三)
分类算法
sklearn转换器和估计器
之前做的特征工程的步骤:
1、实例化 (实例化的是一个转换器类(Transformer))
2、调用fit_transform(对于文档建立分类词频矩阵,不能同时调用)
- 转换器
把特征工程的接口称为转换器
调用形式:
- fit_transform
fit_transform的作用相当于transform加上fit - fit
用于从一个训练集中学习模型参数,在fit的基础上,把做的转化应用到每个数据点上,包括归一化时要用到的均值,标准偏差。fit之后,可以调用各种API方法,transform是其中之一。fit_transform与transform运行结果一致,但是fit与transform无关,只是数据处理的两个环节。
StandardScaler(copy=True, with_mean=True, with_std=True) # 返回值
- transform
用于将fit()后学到的数据集特征应用到数据集
注意: - 训练集使用fit_transform(),而测试集使用tranform()
因为在训练数据集的时候,已经使用fit()或者fit_transform得到了整体的指标(均值,方差等),所以在测试集上直接transform()调用之前的指标。如果此时在测试集上再进行一次fit(),由于两次的数据不一样,导致得到不同的指标,会使预测发生偏差,因为模型是针对之前的数据fit()出来的标准来训练的,而现在的数据是新的标准,会导致预测的不准确。 - fit(x,y)传两个参数的是有监督学习的算法,两个参数分别对应这特征和目标值
fit(x)传一个参数的是无监督学习的算法,比如降维,特征提取,标准化
- 估计器
在sklearn中,估计器(estimator)是一个重要的角色,是一类实现了算法的API
- 用于分类的估计器:
sklearn.neighbors k-近邻算法
sklearn.naive_bayes 贝叶斯
sklearn.linear_model.LogisticRegression 逻辑回归
sklearn.tree 决策树与随机森林 - 用于回归的估计器:
sklearn.linear_model.LinearRegression 线性回归
sklearn.linear_model.Ridge 岭回归 - 用于无监督学习的估计器
sklearn.cluster.KMeans 聚类
K-近邻算法
如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。
- 距离公式
- API
sklearn.neighbors.KNeighborsClassifier(n_neighbors=5,algorithm=‘auto’)
n_neighbors:int,可选(默认= 5),k_neighbors查询默认使用的邻居数
algorithm:{‘auto’,‘ball_tree’,‘kd_tree’,‘brute’},可选用于计算最近邻居的算法:‘ball_tree’将会使用
BallTree,‘kd_tree’将使用 KDTree。‘auto’将尝试根据传递给fit方法的值来决定最合适的算法。
(不同实现方式影响效率)
from sklearn.neighbors import KNeighborsClassifier
def load_data():
iris = datasets.load_iris()
x_train, x_test, y_train, y_test = \
train_test_split(iris.data, iris.target, test_size=0.2, random_state=22)
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test) # 测试集不要用fit, 因为要保持和训练集处理方式一致
return x_train, x_test, y_train, y_test
def KNN_test():
x_train, x_test, y_train, y_test = load_data()
# KNN算法预估器
estimator = KNeighborsClassifier(n_neighbors=3)
estimator.fit(x_train, y_train)
# 传入测试值通过前面的预估器获得预测值
y_predict = estimator.predict(x_test)
print("预测值为:", y_predict, "\n真实值为:", y_test, "\n比较结果为:", y_test == y_predict)
score = estimator.score(x_test, y_test)
print("准确率为: ", score)
return None
- 结果评价
准确率: 分类算法的评估之一
1、k值取多大?有什么影响?
k值取很小:容易受到异常点的影响
k值取很大:受到样本均衡的问题
2、性能问题?
距离计算上面,时间复杂度高
优点:
简单,易于理解,易于实现,无需训练
缺点:
懒惰算法,对测试样本分类时的计算量大,内存开销大
必须指定K值,K值选择不当则分类精度不能保证
使用场景:小数据场景,几千~几万样本,具体场景具体业务去测试
模型选择与调优
交叉验证
交叉验证目的:为了让被评估的模型更加准确可信
交叉验证:将拿到的训练数据,分为训练和验证集。以下图为例:将数据分成5份,其中一份作为验证集。然后经过5次(组)的测试,每次都更换不同的验证集。即得到5组模型的结果,取平均值作为最终结果。又称5折交叉验证。
数据分为训练集和测试集,但是为了让从训练得到模型结果更加准确。做以下处理:
训练集:训练集+验证集
测试集:测试集
超参数搜索-网格搜索(Grid Search)
通常情况下,有很多参数是需要手动指定的(如k-近邻算法中的K值),这种叫超参数。但是手动过程繁杂,所以需要对模型预设几种超参数组合。每组超参数都采用交叉验证来进行评估。最后选出最优参数组合建立模型。
- API
sklearn.model_selection.GridSearchCV(estimator,
param_grid=None,cv=None) 对估计器的指定参数值进行详尽搜索 estimator:估计器对象
param_grid:估计器参数(dict){“n_neighbors”:[1,3,5]}
cv:指定几折交叉验证
fit:输入训练数据
score:准确率 结果分析: bestscore:在交叉验证中验证的最好结果_ bestestimator:最好的参数模型
cvresults:每次交叉验证后的验证集准确率结果和训练集准确率结果
def KNN_optimal(): # 模型选择和调优
# 网格搜索和交叉验证
x_train, x_test, y_train, y_test = load_data()
estimator = KNeighborsClassifier() # 默认都是欧式距离, 采用的是minkowski推广算法,p=1是曼哈顿, p=2是欧式, 而默认值为2
# 开始调优
# 第一个参数是estimator
# 第二个是估计器参数,参数名称(字符串)作为key,要测试的参数列表作为value的字典,或这样的字典构成的列表
# 第三个是指定cv=K, K折交叉验证
# https://www.cnblogs.com/dblsha/p/10161798.html
param_dict = {"n_neighbors": [1, 3, 5, 7, 9, 11]}
estimator = GridSearchCV(estimator, param_grid=param_dict, cv=10)
# 结束调优
estimator.fit(x_train, y_train)
# 传入测试值通过前面的预估器获得预测值
y_predict = estimator.predict(x_test)
print("预测值为:", y_predict, "\n真实值为:", y_test, "\n比较结果为:", y_test == y_predict)
score = estimator.score(x_test, y_test)
print("准确率为: ", score)
# ------------------
print("最佳参数:\n", estimator.best_params_)
print("最佳结果:\n", estimator.best_score_)
print("最佳估计器:\n", estimator.best_estimator_)
print("交叉验证结果:\n", estimator.cv_results_)
# -----------------以上是自动筛选出的最佳参数, 调优结果
朴素贝叶斯算法
贝叶斯+假设特征条件之间相互独立
贝叶斯公式:
- 拉普拉斯平滑系数
目的:防止计算出的分类概率为0
API sklearn.naive_bayes.MultinomialNB(alpha = 1.0) 朴素贝叶斯分类
alpha:拉普拉斯平滑系数
def load_data():
# all_data = fetch_20newsgroups(subset="all") # 下载新闻
all_data = load_files(container_path="F:\\Installations\\JetBrains\\PycharmProjects\\TestDemo\\venv\\resources\\20news-bydate-train")
x_train, x_test, y_train, y_test = \
train_test_split(all_data.data, all_data.target, test_size=0.2, random_state=22)
transfer = TfidfVectorizer() # 这是一种文本分类器
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test) # 测试集不要用fit, 因为要保持和训练集处理方式一致
return x_train, x_test, y_train, y_test
def naive_bayes_test(): # 正常的代码过程是数据处理,然后预估器,然后预估预测值
x_train, x_test, y_train, y_test = load_data()
estimator = MultinomialNB()
estimator.fit(x_train, y_train)
y_predict = estimator.predict(x_test)
print("预测值为:", y_predict, "\n真实值为:", y_test, "\n比较结果为:", y_test == y_predict)
score = estimator.score(x_test, y_test)
print("准确率为: ", score)
return None
- 评价
优点:
朴素贝叶斯模型发源于古典数学理论,有稳定的分类效率。
对缺失数据不太敏感,算法也比较简单,常用于文本分类。
分类准确度高,速度快
缺点:
由于使用了样本属性独立性的假设,所以如果特征属性有关联时其效果不好
决策树
决策树思想的来源非常朴素,程序设计中的条件分支结构就是if-then结构,最早的决策树就是利用这类结构分割数据的一种分类学习方法,每次划分优先选择权重大的节点。
- 信息熵
猜猜这32支球队那个是冠军。并且猜测错误付出代价。每猜错一次给一块钱,为了使代价最小,可以使用二分法猜测.32支球队,log32=5比特
香农指出,它的准确信息量应该是,p为每个球队获胜的概率(假设概率相等,都为1/32),我们不用钱去衡量这个代价了,香浓指出用比特:
H的专业术语称之为信息熵,单位为比特。
当这32支球队夺冠的几率相同时,对应的信息熵等于5比特
只要概率发生任意变化,信息熵都比5比特大 - 信息和消除不确定性是相联系的
当我们得到的额外信息(球队历史比赛情况等等)越多的话,那么我们猜测的代价越小(猜测的不确定性减小) - 信息增益
决策树的划分依据之一
特征A对训练数据集D的信息增益g(D,A),定义为集合D的信息熵H(D)与特征A给定条件下D的信息条件熵H(D|A)之差,即公式为:
决策树的三种算法实现
- ID3
信息增益 最大的准则 - C4.5
信息增益比 最大的准则 - CART
分类树: 基尼系数 最小的准则 在sklearn中可以选择划分的默认原则
优势:划分更加细致(从后面例子的树显示来理解)
决策树API
class sklearn.tree.DecisionTreeClassifier(criterion=’gini’, max_depth=None,random_state=None)
决策树分类器
criterion:默认是’gini’系数,也可以选择信息增益的熵’entropy’
max_depth:树的深度大小
random_state:随机数种子
其中会有些超参数:max_depth:树的深度大小
其它超参数结合随机森林说
def show_tree(estimator, feature_name):
export_graphviz(estimator, out_file="../tree.dot", feature_names=feature_name) # 生成树文件, 可以用图像识别软件来画树
return None
def decision_tree_test():
iris = datasets.load_iris()
x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=22)
estimator = DecisionTreeClassifier(criterion="entropy")
estimator.fit(x_train, y_train)
show_tree(estimator, iris.feature_names)
y_predict = estimator.predict(x_test)
print("预测值为:", y_predict, "\n真实值为:", y_test, "\n比较结果为:", y_test == y_predict)
score = estimator.score(x_test, y_test)
print("准确率为: ", score)
return None
- 总结
优点:
简单的理解和解释,树木可视化。
缺点:
决策树学习者可以创建不能很好地推广数据的过于复杂的树,这被称为过拟合。
改进:
减枝cart算法(决策树API当中已经实现,随机森林参数调优有相关介绍)
集成学习方法之随机森林
集成学习通过建立几个模型组合的来解决单一预测问题。它的工作原理是生成多个分类器/模型,各自独立地学习和作出预测。这些预测最后结合成组合预测,因此优于任何一个单分类的做出预测。
在机器学习中,随机森林是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。例如, 如果你训练了5个树, 其中有4个树的结果是True, 1个数的结果是False, 那么最终投票结果就是True
- 原理
学习算法根据下列算法而建造每棵树:
用N来表示训练用例(样本)的个数,M表示特征数目。
1、一次随机选出一个样本,重复N次, (有可能出现重复的样本)
2、随机去选出m个特征, m <<M,建立决策树 - 采取bootstrap抽样
如果不进行随机抽样,每棵树的训练集都一样,那么最终训练出的树分类结果也是完全一样的
为什么要有放回地抽样?
如果不是有放回的抽样,那么每棵树的训练样本都是不同的,都是没有交集的,这样每棵树都是“有偏的”,都是绝对“片面的”(当然这样说可能不对),也就是说每棵树训练出来都是有很大的差异的;而随机森林最后分类取决于多棵树(弱分类器)的投票表决。 - API
class sklearn.ensemble.RandomForestClassifier(n_estimators=10, criterion=’gini’, max_depth=None, bootstrap=True, random_state=None, min_samples_split=2)
随机森林分类器
n_estimators:integer,optional(default = 10)森林里的树木数量120,200,300,500,800,1200
criteria:string,可选(default =“gini”)分割特征的测量方法
max_depth:integer或None,可选(默认=无)树的最大深度 5,8,15,25,30
max_features="auto”,每个决策树的最大特征数量
If “auto”, then max_features=sqrt(n_features).
If “sqrt”, then max_features=sqrt(n_features) (same as “auto”).
If “log2”, then max_features=log2(n_features).
If None, then max_features=n_features.
bootstrap:boolean,optional(default = True)是否在构建树时使用放回抽样
min_samples_split:节点划分最少样本数
min_samples_leaf:叶子节点的最小样本数
超参数:n_estimator, max_depth, min_samples_split,min_samples_leaf
estimator = RandomForestClassifier()
# 默认bootstrap 表示为true,也就是说默认情况下放回抽样
param_dict = {"n_estimators": [120, 200, 300, 500, 800, 1200],
"max_depth": [5, 8, 15, 25, 30]}
estimator = GridSearchCV(estimator, param_grid=param_dict, cv=3)
estimator.fit(x_train, y_train) # 训练集里面的数据和目标值
# 传入测试值通过前面的预估器获得预测值
y_predict = estimator.predict(x_test)
print("预测值为:", y_predict, "\n真实值为:", y_test, "\n比较结果为:", y_test == y_predict)
score = estimator.score(x_train, y_train)
print("准确率为: ", score)
- 总结
在当前所有算法中,具有极好的准确率
能够有效地运行在大数据集上,处理具有高维特征的输入样本,而且不需要降维
能够评估各个特征在分类问题上的重要性