YOLO标注工具,支持半自动标注

结合了一些标注工具的优点,例如make-sense等,优化了下标注流程,增加了YOLOv8的半自动标注。目前只有普通检测标注

界面外观

  • 在这里插入图片描述

安装

文件下载链接,下载解压完成后,推荐用pycahrm打开

  • 如果不需要加载模型使用下面命令
pip install PyYaml PyQt5 Numpy opencv-python pillow -i https://pypi.tuna.tsinghua.edu.cn/simple
  • 如果要使用半自动标注功能,命令
pip install ultralytics PyQt5 -i https://pypi.tuna.tsinghua.edu.cn/simple
  • 打开main.py然后直接运行即可
    在这里插入图片描述

图像相关操作

添加本地图片

只会添加png,jpg和jpeg结尾的图像

  • 添加方式一:选则文件
    在这里插入图片描述
  • 方式二:选则文件夹
    在这里插入图片描述

放大缩小图片

  • 方式一:通过+和-按钮放大缩小
  • 方式二:点击手型按钮,然后使用滚轮缩放。按住拖动。
    在这里插入图片描述
  • 方式三:按住CRTL键,然后使用滚轮缩放。按住拖动。
  • 当鼠标箭头的样式为箭头时,使用滚轮不会放大和缩小图像 但是会上下移动

切换图像

  1. 点击左侧的缩略图切换
  2. 按下Z切换到上一张图像
  3. 按下X切换到下一张图像
    在这里插入图片描述

启动界面

  1. 如果之前标注过,则会在temp_folder文件夹下保存上次的标注文件,如果保留,在加载本地图像时,如果图像前缀和本地副本txt文件前缀相同则会加载标签。
    在这里插入图片描述

添加类别信息

  • 1.修改Detection.yaml本地配置文件中的names

    在这里插入图片描述

  • 2.需要在进加载图像前添加)

  • 在这里插入图片描述

标注相关操作

加载本地标签

  • 点击第三个图标,选则txt文件。
  • 只要本地标签的前缀和图像前缀相同即可匹配加载
    在这里插入图片描述

添加标注框

  • 在空白处点击鼠标左键然后拉框,松手即可完成
    在这里插入图片描述

更改标注框类别

  • 方式一:双击标注框
    在这里插入图片描述
  • 方式二:右侧更改
    在这里插入图片描述

更改标注框颜色

  • 选中标注框后,即可修改该框对应类别的显示颜色
    在这里插入图片描述

选中标注框

  • 鼠标左键单击标注框 或者 在右侧选中标注框
    在这里插入图片描述

删除标注框

  • 方式一:选中标注框从键盘按下Delete键

  • 方式二:选中标注框按下鼠标右键(推荐)
    在这里插入图片描述

  • 方式三:选中标注框点击删除框按钮(在屏幕右上角)

调整标注框

  • 选中标注框之后,鼠标放置在红色标记点附近即可对标注框做出调整
    在这里插入图片描述

导出标签

  • 在这里插入图片描述

半自动标注

半自动标注本质就是先用一部分图片训练一个半成品模型,用这个半成品模型去标注剩下的图像,人工修正错误的标签,这样会比直接标注全部图像省力

加载模型

  • 首先点击加载模型按钮
    在这里插入图片描述
    这里用了多线程去加载,加载期间可以继续其他任务,当加载成功后会提示,点击Yes或No即可,初次加载时间会稍长,后面在加载或者标注就不会耗费较长的时间了
    在这里插入图片描述

开始半自动标注

  • 要确保模型标注出来的类别已经被添加好了(names),不然会报错
  • C键是半自动标注快捷键
    在这里插入图片描述

人工审查

  • 半自动标注完成后,需要检查下当前的标注是否符合预期,如果和预期有一定出入,需要手动修改
    在这里插入图片描述
    这几个功能和框的显示有关,分别为隐藏前面框?,显示点?显示类别?填充显示?
YOLO(You Only Look Once)是一种流行的目标检测算法,其特点是能够快速而准确地检测图像中的多个物体。为了提高YOLO算法的效率,开发者们还设计了一种自动标注工具,能够帮助用户自动标注训练数据集。 YOLO自动标注工具的原理是利用计算机视觉技术,通过图像处理算法自动检测和定位感兴趣的物体,并为其生成标注框。该工具可以根据用户需求,对图像中的物体进行分类和定位,生成标注结果。 YOLO自动标注工具具有以下优点: 1. 自动化:相比于传统的手动标注方法,YOLO自动标注工具能够快速、高效地完成标注任务,减少了人工操作的时间和精力。 2. 精度高:该工具利用先进的目标检测算法,能够准确地检测并定位图像中的物体,生成准确的标注结果。 3. 可扩展性:YOLO自动标注工具可以灵活地根据用户需求进行定制化设置,满足不同任务的标注需求。 4. 多标签支持:该工具支持对图像中多个物体进行标注,可以识别并标注出不同类别的物体。 尽管YOLO自动标注工具具有许多优点,但也存在一些潜在的问题。例如,在复杂场景下,该工具可能会出现一定的识别误差;此外,它还依赖于训练数据集的质量和数量,因此需要一定的数据准备工作。 总之,YOLO自动标注工具在目标检测任务中具有重要的应用价值,能够大大提高标注效率和准确性。然而,对于特定的应用场景和数据集,用户需要权衡其优势和限制,并进行适当的调整和改进。
评论 40
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

w冷淡

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值