动态规划,英文:Dynamic Programming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。
解题步骤:
- 确定dp数组(dp table)以及下标的含义
- 确定递推公式
- dp数组如何初始化
- 确定遍历顺序
- 举例推导dp数组
LeetCode509.斐波那契数
题目链接:[509. 斐波那契数]
"""
1. 确定dp数组以及下标的含义:dp[i]就表示第i个斐波那契数
2. 确定递推公式:题目中已经给出dp[i] = dp[i-1] + dp[i-2]
3. dp数组初始化:dp[0] = 0, dp[1] = 1
4. 遍历顺序:从2开始遍历至n
5. 举例推导
"""
class Solution:
def fib(self, n: int) -> int:
if n < 2:
return n
dp = [0] * (n+1)
dp[0] = 0
dp[1] = 1
for i in range(2, n+1):
dp[i] = dp[i-1] + dp[i-2]
return dp[n]
# 当然本题比较简单,可以不用维护一个n+1长度的数组,仅使用两个变量维护,空间复杂度降为O(1)
class Solution:
def fib(self, n: int) -> int:
if n < 2:
return n
pre1, pre2 = 0, 1
for _ in range(2, n + 1):
cur = pre1 + pre2
pre1, pre2 = pre2, cur
return pre2
LeetCode70.爬楼梯
题目链接:[70. 爬楼梯]
思路:到达第n阶有两种方式,从第n-1阶跳1个台阶或者从第n-2阶跳2个台阶,所以到达第n阶总方式就是到达第n-1阶的方式加上第n-2阶的方式,状态转移方程与斐波那契数列相似
"""
1. 确定dp数组以及下标的含义:dp[i]就表示到达第i阶的总方式
2. 确定递推公式:根据上述思路,dp[i] = dp[i-1] + dp[i-2]
3. dp数组初始化:dp[0]=0(这里其实可以不用考虑dp[0]的初始化), dp[1] = 1,dp[2]=2
4. 遍历顺序:从3开始遍历至n
5. 举例推导
"""
class Solution:
def climbStairs(self, n: int) -> int:
if n <= 2:
return n
dp = [0] * (n+1)
dp[1] = 1
dp[2] = 2
for i in range(3, n+1):
dp[i] = dp[i-1] + dp[i-2]
return dp[n]
# 类似的,与斐波那契一样,本题可以不用维护一个n+1长度的数组,仅使用两个变量维护,空间复杂度降为O(1)
class Solution:
def climbStairs(self, n: int) -> int:
if n <= 2:
return n
pre1 = 1
pre2 = 2
for i in range(3, n+1):
cur = pre1 + pre2
pre1, pre2 = pre2, cur
return pre2
LeetCode746.使用最小花费爬楼梯
题目链接:[746. 使用最小花费爬楼梯]
思路如下:思路与[70. 爬楼梯]类似,就是dp数组含义需要变化,这里需要注意的是,楼梯顶部不是len(cost),而是len(cost) + 1
"""
1. 确定dp数组以及下标的含义:dp[i]就表示到达第i阶的最小花费
2. 确定递推公式:根据上述思路,dp[i] = min(dp[i-1] + cost[i-1], dp[i-2] + cost[i-2])
3. dp数组初始化:dp[0]=0, dp[1] = 0,0或者1阶可以直接到达,无需花费
4. 遍历顺序:从2开始遍历至n
5. 举例推导
"""
class Solution:
def minCostClimbingStairs(self, cost: List[int]) -> int:
n = len(cost)
if n <= 1:
return 0
dp = [0] * (n+1)
dp[0] = 0
dp[1] = 0
for i in range(2, n+1):
dp[i] = min(dp[i-1] + cost[i-1], dp[i-2] + cost[i-2])
return dp[n]
# 同样可以仅使用两个变量维护,空间复杂度降为O(1)
class Solution:
def minCostClimbingStairs(self, cost: List[int]) -> int:
n = len(cost)
if n <= 1:
return 0
pre1 = 0
pre2 = 0
for i in range(2, n+1):
dpi = min(pre2 + cost[i-1], pre1 + cost[i-2])
pre1, pre2 = pre2, dpi
return pre2