完全背包理论基础.卡码网题目
题目链接:52. 携带研究材料(第七期模拟笔试)
完全背包与01背包区别就是遍历顺序,完全背包内层遍历要从小到大开始,因为每个物品可以取n次
N = [int(x) for x in input().split()]
n = N[0]
v = N[1]
values = []
weight = []
for _ in range(n):
temp = [int(x) for x in input().split()]
weight.append(temp[0])
values.append(temp[1])
dp = [0] * (v + 1)
for i in range(n):
for j in range(weight[i], v + 1):
dp[j] = max(dp[j], dp[j - weight[i]] + values[i])
print(dp[v])
LeetCode518.零钱兑换 II
题目链接:518. 零钱兑换 II
遍历顺序:
本题只能外层遍历物品,内层遍历背包
因为纯完全背包求得装满背包的最大价值是多少,和凑成总和的元素有没有顺序没关系,即:有顺序也行,没有顺序也行!
而本题要求凑成总和的组合数,元素之间明确要求没有顺序。
所以纯完全背包是能凑成总和就行,不用管怎么凑的。
本题是求凑出来的方案个数,且每个方案个数是为组合数。
外层for循环遍历物品(钱币),内层for遍历背包(金钱总额)的情况:
for (int i = 0; i < coins.size(); i++) { // 遍历物品
for (int j = coins[i]; j <= amount; j++) { // 遍历背包容量
dp[j] += dp[j - coins[i]];
}
}
假设:coins[0] = 1,coins[1] = 5。
那么就是先把1加入计算,然后再把5加入计算,得到的方法数量只有{1, 5}这种情况。而不会出现{5, 1}的情况。
所以这种遍历顺序中dp[j]里计算的是组合数!
如果把两个for交换顺序,代码如下:
for (int j = 0; j <= amount; j++) { // 遍历背包容量
for (int i = 0; i < coins.size(); i++) { // 遍历物品
if (j - coins[i] >= 0) dp[j] += dp[j - coins[i]];
}
}
背包容量的每一个值,都是经过 1 和 5 的计算,包含了{1, 5} 和 {5, 1}两种情况。
此时dp[j]里算出来的就是排列数!
class Solution:
def change(self, amount: int, coins: List[int]) -> int:
dp = [0] * (amount + 1)
dp[0] = 1
for i in range(len(coins)):
for j in range(coins[i], amount + 1):
dp[j] += dp[j - coins[i]]
return dp[amount]
LeetCode377.组合总和Ⅳ
题目链接:377. 组合总和 Ⅳ
遍历顺序:
如果求组合数就是外层for循环遍历物品,内层for遍历背包。
如果求排列数就是外层for遍历背包,内层for循环遍历物品。
class Solution:
def combinationSum4(self, nums: List[int], target: int) -> int:
dp = [0] * (target + 1)
dp[0] = 1
for i in range(1, target + 1):
for num in nums:
if i >= num:
dp[i] += dp[i - num]
return dp[target]
爬楼梯进阶版
题目链接:爬楼梯(第八期模拟笔试)
注意与Leetcode70. 爬楼梯进行辨析
N = [int(x) for x in input().split()]
n = N[0]
step = N[1]
dp = [0] * (n + 1)
dp[0] = 1
for i in range(1, n+1):
for j in range(1, step + 1):
dp[i] += dp[i - j]
print(dp[-1])