# 动态规划背包part02 -- 完全背包

完全背包理论基础.卡码网题目

题目链接:52. 携带研究材料(第七期模拟笔试)

完全背包与01背包区别就是遍历顺序,完全背包内层遍历要从小到大开始,因为每个物品可以取n次

N = [int(x) for x in input().split()]
n = N[0]
v = N[1]
values = []
weight = []

for _ in range(n):
    temp = [int(x) for x in input().split()]
    weight.append(temp[0])
    values.append(temp[1])

dp = [0] * (v + 1)

for i in range(n):
    for j in range(weight[i], v + 1):
        dp[j] = max(dp[j], dp[j - weight[i]] + values[i])

print(dp[v])

LeetCode518.零钱兑换 II

题目链接:518. 零钱兑换 II

遍历顺序:

本题只能外层遍历物品,内层遍历背包

因为纯完全背包求得装满背包的最大价值是多少,和凑成总和的元素有没有顺序没关系,即:有顺序也行,没有顺序也行!

而本题要求凑成总和的组合数,元素之间明确要求没有顺序。

所以纯完全背包是能凑成总和就行,不用管怎么凑的。

本题是求凑出来的方案个数,且每个方案个数是为组合数。

外层for循环遍历物品(钱币),内层for遍历背包(金钱总额)的情况:

for (int i = 0; i < coins.size(); i++) { // 遍历物品
    for (int j = coins[i]; j <= amount; j++) { // 遍历背包容量
        dp[j] += dp[j - coins[i]];
    }
}

假设:coins[0] = 1,coins[1] = 5。

那么就是先把1加入计算,然后再把5加入计算,得到的方法数量只有{1, 5}这种情况。而不会出现{5, 1}的情况。

所以这种遍历顺序中dp[j]里计算的是组合数!

如果把两个for交换顺序,代码如下:

for (int j = 0; j <= amount; j++) { // 遍历背包容量
    for (int i = 0; i < coins.size(); i++) { // 遍历物品
        if (j - coins[i] >= 0) dp[j] += dp[j - coins[i]];
    }
}

背包容量的每一个值,都是经过 1 和 5 的计算,包含了{1, 5} 和 {5, 1}两种情况。

此时dp[j]里算出来的就是排列数!

class Solution:
    def change(self, amount: int, coins: List[int]) -> int:
        dp = [0] * (amount + 1)
        dp[0] = 1

        for i in range(len(coins)):
            for j in range(coins[i], amount + 1):
                dp[j] += dp[j - coins[i]]
        return dp[amount]

LeetCode377.组合总和Ⅳ

题目链接:377. 组合总和 Ⅳ

遍历顺序:

如果求组合数就是外层for循环遍历物品,内层for遍历背包

如果求排列数就是外层for遍历背包,内层for循环遍历物品

class Solution:
    def combinationSum4(self, nums: List[int], target: int) -> int:
        dp = [0] * (target + 1)
        dp[0] = 1

        for i in range(1, target + 1):
            for num in nums:
                if i >= num:
                    dp[i] += dp[i - num]
        
        return dp[target]

爬楼梯进阶版

题目链接:爬楼梯(第八期模拟笔试)

注意与Leetcode70. 爬楼梯进行辨析

N = [int(x) for x in input().split()]
n = N[0]
step = N[1]

dp = [0] * (n + 1)
dp[0] = 1


for i in range(1, n+1):
    for j in range(1, step + 1):
        dp[i] += dp[i - j]

print(dp[-1])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值