分析:
我用的【找规律】🔺【直接输出、不用换数组】🔺
123456
561234
//差的绝对值等于 4 = 6 - 2
输出 arr[ (i+(N - M))%N ]
(0+4)%6 == 4 ----5
(1+4)%6 == 5 ----6
(2+4)%6 == 0 ----1
(3+4)%6 == 1 ----2
(4+4)%6 == 2 ----3
(5+4)%6 == 3 ----4
本题有坑:
1.不允许使用另外数组
2.M有可能比N大 🔺m=m%n;不要忘记加!!🔺
3.序列结尾不能有多余空格
#include<iostream>
using namespace std;
int main(){
int N,M;
int arr[100];
cin>>N>>M;
M=M%N;//M有可能比N大
//输入数组
for(int i=0;i<N;i++){
cin>>arr[i];
}
for(int i=0;i<N-1;i++){
cout<<arr[(i+(N-M))%N]<<" ";
}
cout<<arr[(N-1+(N-M))%N];
}
1、m=m%n;
2、利用队列实现,但是有队列是先进先出
和数组右移
机制有些不同,所以我们他进行左移,因为他移动的位数是循环的,所以我们可以做成左移n-m位
#include<iostream>
#include<queue>
using namespace std;
int main(){
int n,m,num; cin>>n>>m; queue<int> q;
m=m%n;//!!!
for(int i=1;i<=n;i++){
cin>>num;
q.push(num);
}//输入
for(int i=1;i<=n-m;i++){
int st=q.front();
q.pop();
q.push(st);
}//出队入队
cout<<q.front();
q.pop();
for(int i=2;i<=n;i++){
cout<<" "<<q.front();
q.pop();
}//输出
}