目录
04
自变量取值范围
函数连续,一阶导连续,判断邻域单调,邻域函数值
微积分物理应用
行列式 初等行变换,得基础解系,进而得通解
2005
讨论极限值,确定分段函数,不可导点
积分要素要明确,计算时合并同类项要注意看清楚
两种方法,求最值。第一,域内求驻点+边界点,合并消元,讨论函数单调性,范围内求边界值。第二用拉格朗日,通用一般法
二重积分,区域函数对称性要充分充分利用!简化计算
2006
向量组相关性
积分,两点,一、求导进行到底,二、+C
必须描述清楚,属于某个特征值的特征向量,k任意非零常数
逻辑严谨夹逼证明n个线性无关向量解
正交单位化,分两步,分别设向量用数学语言表示
2007
极限拆的原则,拆后都存在
二元函数,可微定义
取值范围问题,考虑清楚正负号±
找隐藏条件,实对称矩阵特征向量两两正交,得关系建立方程,夹逼定矩阵全部特征值特征向量
2008
外层函数单调有界,内层函数单调,则外层函数收敛,其余举反例,通常分段函数,常数,振荡函数
证明题两种思路, 已知条件都列出来,找关系建立方程。
反推法,若证明结论,需要满足什么条件。
行列式,递推求,逐行相减,数学归纳三种求值。克拉默法则求解x, 无穷解求基础解系+特解。注意特殊矩阵基础解系求法,
2009
间断点问题,分母趋于0,极限不一定是无穷,还得看分子是常数/0/∞。未定式求极限应该满足洛必达条件
极值点用充分条件判定,偏导数...ac-b²与0做比较。连续判定,因为有全微分形式,则函数必连续
曲率圆方程→曲圆半径R→曲率K→二阶导与一阶导的关系式;曲率圆图 可近似 代替一段 原函数的图,此时二阶导±正负即可确定,一阶导单调性随之确定;一阶导与原函数 联想到 拉格朗日定理
零点存在定理,两端值异号,则区间内必存在零点。
极值判定,第一条件,一阶导是否变号。第二条件,一阶导=0,二阶导大小。
迹的应用,
分段函数,求微分方程 。光滑曲线 暗含,函数连续,一阶导连续
拉格朗日证明,用罗尔→闭区间连续,开区间可导,端点值相等,则区间内必存在零点。难点在于凑型构建辅助函数
导函数定义证明邻域内有极限值
二次型系数
2010
微分方程的解
求极限,用积分定义,二重积分
多元 复合函数 偏导
说明偏导连续,二阶值(混合偏导)相等
两次 拉格朗日 ,划分区间
一般矩阵与实对称矩阵
2011
伴随矩阵,矩阵的解集与秩的关系
微分方程,三个变量,建立关系
基本不等式证明,构造辅助函数/单调性/积分不等式
数列是否收敛,考虑到用第一问结论,,,,证单调(相邻之差/之比),证有界 凑出第一问的形式,逐行累加
计算体积,二重积分与积分误区
2012
函数有界推数列收敛,有附加条件An=>0
函数偏导的理解,图示法,函数计算法
证明题,区间对称,考虑函数对称,
对于放缩思想要敏感
单调性证明,泰勒公式证明
函数证明有且仅有一根,连续零点定理
数列极限,先证存在,单调有界,
第一问过于简单,则需要简单证明
正交变换的误区注意,正交单位化
变换的矩阵与标准型对应
2013
微分方程解的结构
伴随矩阵,转置,行列式关系
暴力求极限,泰勒
加项减项
证明题,拉格朗日,
构造辅助函数,凑出罗尔定理
辅助函数通法
拉格朗日数乘,条件极值,➕端点值
讨论值的范围,分析排除=0的情况
形心坐标,计算二重积分,确定函数走向,再确定积分区域
一阶二阶导数,判定积分区间函数是否连续或者分段处理
同阶矩阵相乘,迹相等,具体描述看题
大胆假设未知,用已知条件解决
证明二次型,对应矩阵是对称矩阵 ,
正交单位向量,特点