04-19二刷真题

目录

04

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014


04

自变量取值范围

5b0baaae52a941f6b5666a44057941c4.png

函数连续,一阶导连续,判断邻域单调,邻域函数值

bda5ed59f62a44399ee0a02ef522bdc0.png

微积分物理应用

97221ba788194e138be0ba2730d85908.png

1efe50467fd94e0399038d1d46ec1b86.png

 行列式 初等行变换,得基础解系,进而得通解

6c4b143fdb46401a85cdf555f9e5b44a.png

c04fded4d6554fe896e458f808cce060.png

2005

讨论极限值,确定分段函数,不可导点

b37c373c4a374f70b5040dd06a738f61.png

积分要素要明确,计算时合并同类项要注意看清楚

0f80f335bad8415eae48f777a0393079.png

 两种方法,求最值。第一,域内求驻点+边界点,合并消元,讨论函数单调性,范围内求边界值。第二用拉格朗日,通用一般法

ba1c76832f944fef9bace55c08eb2a3d.png

二重积分,区域函数对称性要充分充分利用!简化计算 

d2105cf0aea74709a2f90f2eda992f13.png

2006

向量组相关性

29fe3794a5804a81a32cede6393a422c.png

积分,两点,一、求导进行到底,二、+C

60a7f04a8e77411e88534862f5a66b13.png 必须描述清楚,属于某个特征值的特征向量,k任意非零常数

逻辑严谨夹逼证明n个线性无关向量解

正交单位化,分两步,分别设向量用数学语言表示

ce4e66cabf7340b49faad891a97f0bf7.png

2007

极限拆的原则,拆后都存在

7daaeaebbce04d609260555fabe9aed9.png

二元函数,可微定义

2bd4a6b41dc64bf08743c84a6fc3bd8f.png

25c5f882780843db9c3511fc8d69b717.png 取值范围问题,考虑清楚正负号±

0d0e0202a25940358e162164f85e5b2f.png 找隐藏条件,实对称矩阵特征向量两两正交,得关系建立方程,夹逼定矩阵全部特征值特征向量

fa70ab54773f492a90f91c0cbd675a7a.png

6591d9fc40964bd989466f1989ebcff6.png

 2008

外层函数单调有界,内层函数单调,则外层函数收敛,其余举反例,通常分段函数,常数,振荡函数

7416fdce3da44625aeab58f9e9bce2e7.png

证明题两种思路, 已知条件都列出来,找关系建立方程。

反推法,若证明结论,需要满足什么条件。

a121b5fbd2e04194b504412d21f25c68.png

9871ccc6a9a848d383b37ea0d46116b3.png

行列式,递推求,逐行相减,数学归纳三种求值。克拉默法则求解x, 无穷解求基础解系+特解。注意特殊矩阵基础解系求法,

2009

间断点问题,分母趋于0,极限不一定是无穷,还得看分子是常数/0/∞。未定式求极限应该满足洛必达条件

cb5c512ce8dc43bd8059519d33cdf2d7.png

 极值点用充分条件判定,偏导数...ac-b²与0做比较。连续判定,因为有全微分形式,则函数必连续fd5fb331f66e4cdcb534c4e5aee3d4af.png

曲率圆方程→曲圆半径R→曲率K→二阶导与一阶导的关系式;曲率圆图 可近似 代替一段 原函数的图,此时二阶导±正负即可确定,一阶导单调性随之确定;一阶导与原函数 联想到 拉格朗日定理

零点存在定理,两端值异号,则区间内必存在零点。

极值判定,第一条件,一阶导是否变号。第二条件,一阶导=0,二阶导大小。

51c57c813be940c7bba16fe16ec4faa9.png

 迹的应用,

679fb3276cd64e8d9e498e3cb6697bdd.png

分段函数,求微分方程 。光滑曲线 暗含,函数连续,一阶导连续

49f4ed418a6f40108ae97db8ba16a034.png

1a180e63a13a4c71a99d44e592170531.png

拉格朗日证明,用罗尔→闭区间连续,开区间可导,端点值相等,则区间内必存在零点。难点在于凑型构建辅助函数

导函数定义证明邻域内有极限值

6b532f4cf25e4ef8811d7e74e88caca5.png

二次型系数

a96dc38851d34e189c3ff164e13a0574.png

 2010

微分方程的解

7d90ba99948b4118b79dd6dd9489e32f.png

求极限,用积分定义,二重积分

a2673e8d86a8444489905e265729d838.png

0af57b09af484273b6fcf732895d5a5f.png

多元 复合函数 偏导

说明偏导连续,二阶值(混合偏导)相等 

67f2915ad36a4f3298dd3568883332e3.png

两次 拉格朗日 ,划分区间

008063b91b7c49f39a40d4f2881904fb.png

一般矩阵与实对称矩阵

b86697b86ea549faa7833125799a177f.png

2011

伴随矩阵,矩阵的解集与秩的关系

daea349d927b4b28b7bc3ab489ae6dec.png

 微分方程,三个变量,建立关系

dfb2abbdafde4fe5a645df82de1dbfba.png

基本不等式证明,构造辅助函数/单调性/积分不等式

数列是否收敛,考虑到用第一问结论,,,,证单调(相邻之差/之比),证有界  凑出第一问的形式,逐行累加

6b77c2992d174cd6acf11bbd4480f66a.png

77f81f249cbb4c30b4d13651474009b7.png

计算体积,二重积分与积分误区

bc64f08b077742c494ce7bcf25db60dd.png

2012

函数有界推数列收敛,有附加条件An=>0

f14b52a26d844060abe606311bfed35d.png

函数偏导的理解,图示法,函数计算法

53a682dec91848d28a740f7cb2dae149.png

证明题,区间对称,考虑函数对称,

对于放缩思想要敏感

单调性证明,泰勒公式证明

f35ff2ba525041ed990cdb82fdd5ea2b.png

函数证明有且仅有一根,连续零点定理

数列极限,先证存在,单调有界,

d96f316dea4542a8a9f60ee73b598174.png

083e89ca4cdb4fccaf65d4f073035ac7.png

第一问过于简单,则需要简单证明

正交变换的误区注意,正交单位化

变换的矩阵与标准型对应

8b94a59d939244ae9cae0f76b3f73a34.png

930e9d1b0bd74eefb8841737e49c4833.png

2013

微分方程解的结构

096f0ba8b5f64663a360ee8b63e8c176.png

 伴随矩阵,转置,行列式关系

8670effba5984e9dacdfcd94f6471242.png

暴力求极限,泰勒

加项减项

b6e8612da24c489abf2bd0f68c25517d.png

f9b420a7abcd45bf8a80da2511ab3fac.png

证明题,拉格朗日,

构造辅助函数,凑出罗尔定理

辅助函数通法

fb897a26f1664fd69517c7592d22dd21.png

拉格朗日数乘,条件极值,➕端点值

讨论值的范围,分析排除=0的情况

3b93251dec814c68acf04184faa465ac.png

 形心坐标,计算二重积分,确定函数走向,再确定积分区域

一阶二阶导数,判定积分区间函数是否连续或者分段处理

8e2b20654ce7475d8a5c8d4a2f6b5e84.png

同阶矩阵相乘,迹相等,具体描述看题

大胆假设未知,用已知条件解决

2d7d2ca4997e490881f1d37cf9cfa349.png

89530e19dcb04ad2945c6ce67098cd17.png

证明二次型,对应矩阵是对称矩阵 ,

正交单位向量,特点

020134970f1a4e37bffc272e9ee26508.png

f2d1b0a5b2ba435e8998fec6481633cf.png

 2014

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

嵩韵儿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值