_ELMA_
码龄5年
关注
提问 私信
  • 博客:32,590
    32,590
    总访问量
  • 42
    原创
  • 354,781
    排名
  • 7
    粉丝
  • 0
    铁粉

个人简介:CSDN SUCK

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2019-06-04
博客简介:

ELMA的博客

查看详细资料
个人成就
  • 获得9次点赞
  • 内容获得8次评论
  • 获得46次收藏
创作历程
  • 2篇
    2023年
  • 7篇
    2022年
  • 26篇
    2021年
  • 7篇
    2020年
成就勋章
TA的专栏
  • 深度学习
    5篇
  • 推荐系统
    2篇
  • Trick
    1篇
  • python
    1篇
  • 算法题
    17篇
  • TMLC阅读笔记
    1篇
  • 算法
    4篇
  • 兰德报告翻译
    1篇
  • 数论
    1篇
  • 数据库 笔记
    3篇
兴趣领域 设置
  • 人工智能
    神经网络
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

180人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

wandb报错 TypeError: bases must be types

protobuf版本不对。
原创
发布博客 2023.07.12 ·
938 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

TensorBoard 没有数据

42行 from tensorboard.compat import notf # noqa: F401。版本 TensorBoard 2.13.0。打开projector_plugin.py。
原创
发布博客 2023.07.08 ·
380 阅读 ·
2 点赞 ·
1 评论 ·
1 收藏

文档无法保存,读取本文档时出现问题(109)

.
原创
发布博客 2022.09.19 ·
2057 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

深度学习推荐系统01一一推荐系统简介

1 推荐系统的架构推荐系统的目的是帮助用户在“信息过载”的情况下高效地获得感兴趣的信息。因此推荐系统要处理的是**“人”和“信息”**的关系。信息包括:物品信息即商品推荐的商品信息、视频推荐的视频信息等用户信息用户历史行为、用户属性、关系网络等场景信息(上下文)时间、地点、用户状态等1.1 推荐系统的逻辑框架推荐系统要处理的问题可以较形式化地定义为:对于用户U (user),在特定场景C (context)下,针对海量的“物品”信息,构建一个函数f(U,I,C)f(U,I
原创
发布博客 2022.05.26 ·
224 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

深度学习推荐系统02——前深度学习时代

回顾前深度学习时代的推荐模型仍是非常必要的,因为:协同过滤、逻辑回归、因子分解机等传统推荐模型仍然凭借其可解释性强、硬件环境要求低、易于快速训练和部署等不可替代的优势,拥有大量适用的应用场景。传统推荐模型是深度学习推荐模型的基础1 传统推荐模型的演化关系[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Cxq2rPYT-1653567457047)(https://raw.githubusercontent.com/SNIKCHS/MDImage/main/img/t
原创
发布博客 2022.05.26 ·
503 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

推荐系统笔记 第1章 推荐系统简介

1 推荐系统的架构推荐系统的目的是帮助用户在“信息过载”的情况下高效地获得感兴趣的信息。因此推荐系统要处理的是**“人”和“信息”**的关系。信息包括:物品信息即商品推荐的商品信息、视频推荐的视频信息等用户信息用户历史行为、用户属性、关系网络等场景信息(上下文)时间、地点、用户状态等1.1 推荐系统的逻辑框架推荐系统要处理的问题可以较形式化地定义为:对于用户U (user),在特定场景C (context)下,针对海量的“物品”信息,构建一个函数f(U,I,C)f(U,I
原创
发布博客 2022.05.22 ·
301 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

动手学深度学习 英文版 推荐系统部分 pytorch实现

代码实现:https://github.com/SNIKCHS/d2l_RecSys_pytorch1.相关概念1.1协同过滤Collaborative Filtering协同过滤算法基于一个基础的强预设:在观测到用户消费过条目A之后,有很高的可能性观测到用户会喜欢与A相似的条目B(Item CF)以及相似的用户可能喜欢同一个条目。所以协同过滤的核心在于描述条目和用户的相似度。相似度有很多种计算方式,最常用的就是欧式距离,和余弦相似度。1.2显式反馈和隐式反馈显性反馈行为:用户明确表示对物品喜
原创
发布博客 2022.05.22 ·
927 阅读 ·
1 点赞 ·
0 评论 ·
8 收藏

笔记04-Transformer

一、Attention1.1心理学中的注意力提示心理学家认为生物会基于非自主性提示和自主性提示 有选择地引导注意力的焦点。非自主性提示是基于环境中物体的突出性和易见性。如下图中由于突出性的非自主性提示(红杯子),注意力不自主地指向了咖啡杯人希望读书时,依赖于任务的意志提示,注意力被自主引导到书上1.2注意力机制卷积、全连接、池化层都只考虑非自主性提示,如max pooling抽取一定范围内最大的数据,注意力机制则考虑自主性提示。自主性提示称为查询(query)每个输入是一个值(v
原创
发布博客 2022.04.02 ·
3058 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

深度学习笔记03-NLP

文章目录一、循环神经网络1.1 序列模型1.2 符号约定1.3 循环神经网络模型1.4 循环神经网络的反向传播1.5 不同类型的循环神经网络1.6语言模型和序列生成1.7 新序列采样1.8 循环神经网络的梯度消失1.9 门控循环单元(Gated Recurrent Unit(**GRU**))1.10 长短期记忆(**LSTM**(long short term memory)unit)1.11 双向循环神经网络1.12 深层循环神经网络二、自然语言处理与词嵌入2.1词嵌入(**word embedding
原创
发布博客 2022.03.29 ·
1657 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

pycharm选择是否运行程序时开启新的控制台

菜单栏run->edit configurationsExecution的Run with Python Console选项
原创
发布博客 2021.12.26 ·
630 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

深度学习笔记02_CNN

文章目录一、卷积神经网络1.1 卷积神经网络基础1.1.1 计算机视觉介绍1.1.2 边缘检测示例1.1.3 Padding1.1.4 卷积步长(Strided convolutions)1.1.5 三维卷积(Convolutions over volumes)1.1.6 单层卷积网络1.1.7 池化层(Pooling layers)1.1.8 卷积神经网络示例1.1.9 为什么使用卷积?(Why convolutions?)1.2 深度卷积网络:实例探究1.2.1 经典网络1.2.2 残差网络(ResNe
原创
发布博客 2021.12.17 ·
2237 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

深度学习笔记01_基础

文章目录一、神经网络和深度学习1.1 神经网络基础1.1.1 逻辑回归(Logistic Regression)1.1.2 逻辑回归的代价函数(Logistic Regression Cost Function)1.1.3 梯度下降法(Gradient Descent)单个样本的梯度下降m 个样本的梯度下降1.2浅层神经网络(Shallow neural networks)1.2.1 神经网络的表示(Neural Network Representation)1.2.2 计算一个神经网络的输出1.2.3 激
原创
发布博客 2021.12.01 ·
2025 阅读 ·
1 点赞 ·
2 评论 ·
1 收藏

matplotlib 同时画点和线

plt.figure() #同时画点和线plt.plot(X, Y) plt.scatter(X, Y)plt.show()
原创
发布博客 2021.11.01 ·
964 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

ECNU OJ 3531 定西(爬楼梯) dp Java

来源:https://acm.ecnu.edu.cn/problem/3531/坑点在于如果破损台阶为0,样例不会输出一个空行,如果不特判会报Runtime errorpackage ECNU;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStreamReader;/** * @date 2021/9/14 10:18 * 定西-走台阶-动态规划 * https://acm.ec
原创
发布博客 2021.09.14 ·
180 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

leetcode 322 零钱兑换——完全背包问题 Java 题解

原题:https://leetcode-cn.com/problems/coin-change/submissions/没有优化,“在所有 Java 提交中击败了5.01%的用户”,在这里记录一下dp[i][j] = min{dp[i-1][j-k*coins[i]+k,dp[i][j]} ,状态转移不要把+k忘记了public int coinChange(int[] coins, int amount) { /** * dp[i][j] 当前在考虑拿多少第i个硬币,现在总金额
原创
发布博客 2021.09.14 ·
221 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Chapter 1 StartWithTensorflow

环境源代码:https://github.com/nfmcclure/tensorflow_cookbookTensorflow:https://www.tensorflow.org/conda install tensorflowconda listconda install cudatoolkit=11.0 -c http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64/conda install cudnn=7.6.5 -c
原创
发布博客 2021.06.11 ·
135 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

2021蓝桥杯 省赛 杨辉三角形 Java

题目给定一个正整数 N,请你输出杨辉三角数列中第一次出现 N 是在第几个数?输入格式输入一个整数 N。输出格式输出一个整数代表答案。代码package blueBridgeCB2021First;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStreamReader;/** * 杨辉三角形 * AC * https://www.acwing.com/problem/co
原创
发布博客 2021.05.27 ·
1959 阅读 ·
0 点赞 ·
1 评论 ·
4 收藏

2021 蓝桥杯 省赛 砝码称重 题解 Java

题目你有一架天平和 N 个砝码,这 N 个砝码重量依次是 W1,W2,⋅⋅⋅,WN。请你计算一共可以称出多少种不同的正整数重量?注意砝码可以放在天平两边。输入格式输入的第一行包含一个整数 N。第二行包含 N 个整数:W1,W2,W3,⋅⋅⋅,WN。输出格式输出一个整数代表答案。数据范围对于 50% 的评测用例,1≤N≤15。对于所有评测用例,1≤N≤100,N 个砝码总重不超过 105。思路当时并没有做出来…看了点y总的思路然后自己做啦。每个砝码有放+Wi、不放0、和放在另一边-
原创
发布博客 2021.05.26 ·
2528 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

KMP算法 k=next[k]如何保证最长匹配前后缀的个人理解

推荐一下这位博主的文章https://blog.csdn.net/BaiDingLT/article/details/69808221我是看到 BaiDingLT 这位博主的文章才懂的,下文还要借用这位博主的图。接下来我就 为什么k=next[k]能保证匹配前后缀的长度是最长的 提供一些个人理解。首先假如当前要计算next[j],则next[i](i<j)表示在角标i之前已经匹配的最长前缀后缀的长度。next[i]是已经算好的若p[k] != p[j]则在上图中右边的绿色子串要缩短,也就是
原创
发布博客 2021.04.11 ·
240 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

蓝桥杯 分割项链 Java

问题描述两个强盗刚刚抢到一条十分珍贵的珍珠项链,正在考虑如何分赃。由于他们不想破坏项链的美观,所以只想把项链分成两条连续的珍珠链。然而亲兄弟明算账,他们不希望因为分赃不均导致不必要的麻烦,所以他们希望两条珍珠链的重量尽量接近。于是他们找到了你,希望让你帮忙分赃。  我们认为珍珠项链是由n颗不同的珍珠组成的,我们可以通过称重,分别称出每颗珍珠的重量(我们忽略连接珍珠的“链”的重量)。你要求的是每个人至少能得到多重的珍珠(即分赃少的那个人能得到多重的珍珠)。输入格式第一行一个整数n,表示这个珍珠项链有多
原创
发布博客 2021.03.25 ·
999 阅读 ·
2 点赞 ·
2 评论 ·
1 收藏
加载更多