电路布线问题算法

电路布线问题算法

public class Dianlu {
	public int[] c;
	public int[][] size;
	public int[] net;
	public Dianlu(int[] b){
		this.c=b;
		this.size=new int[b.length][b.length];
//下标从1开始
		this.net=new int[b.length];
	}
	public static void main(String[] args) {
		int[] c = {0,8,7,4,2,5,1,9,3,10,6};
//下标从1开始,第一个数,0不算,总共10个数
	Dianlu d = new Dianlu(c);
	mnset(d.c, d.size);
	int x = traceback(d.c, d.size, d.net);
	System.out.println("最大不相交连线数目为::"+x);
	}
			//递归计算最优值
	public static void mnset(int []c,int [][]size){
	int n=c.length-1;
		for(int j=0;j<c[1];j++)
			size[1][j]=0;
		for(int j=c[1];j<=n;j++)
			size[1][j]=1;
		for(int i=2;i<n;i++){
			for(int j=0;j<c[i];j++)//j<π(i)的情况
				size[i][j]=size[i-1][j];
			for(int j=c[i];j<=n;j++)//j>=π(i)的情况
	size[i][j]=Math.max(size[i-1][j], size[i-1][c[i]-1]+1);
		}
		size[n][n]=Math.max(size[n-1][n], size[n-1][c[n]-1]+1);
	}
	//构造最优解
	public static int traceback(int []c,int [][]size,int []net){
		int n=c.length-1;
		int j=n;
		int m=0;
		for(int i=n;i>1;i--)
			if(size[i][j]!=size[i-1][j]){     //此时(i,c[i])是最大不相交子集
				net[m++]=i;
				j=c[i]-1;   //更新扩展连线柱区间
				if(j>=c[1])
					net[m++]=1;    //处理i=1的情形
				System.out.println("最大不相交连线分别为:");
				for(int t=m-1;t>=0;t--){
					System.out.println(net[t]+"  "+c[net[t]]);
				}
			}
		return m;
	}

}

执行结果

最大不相交连线分别为:
1  8
9  10
最大不相交连线分别为:
1  8
7  9
1  8
9  10
最大不相交连线分别为:
5  5
1  8
7  9
1  8
9  10
最大不相交连线分别为:
3  4
5  5
1  8
7  9
1  8
9  10
最大不相交连线数目为::6
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页