可以多多关注我吗???
1、官网下载代码与权重.(权重放在根目录下)
2、conda create -n yolov9 python=3.8
后激活 activate yolov9
3、使用该虚拟环境并点击“与该虚拟环境绑定”
4、虚拟环境中,pip install -r requirements.txt,安装库
5、卸载依赖中torch的CPU环境,pip uninstall torch
安装pytorch官网的pytorch命令,以下为11.8版本(注意版本不可小于cuda),下载时间比较长,别用清华源。
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia,到此GPU环境搭建结束。一切均结束。
6、增加这个test.py,验证GPU环境。直接运行,看是否为GPU环境。
7、将权重文件路径和配置文件路径依次填入train脚本中,如下: