《超声图像多目标语义分割方法研究》大论文笔记

本文针对乳腺超声图像的多类分割问题进行了深入研究,探讨了非语义和语义分割方法,重点比较了基于SVM的粗分割和全连接条件随机场(CRF)的精细分割。实验中,通过特征提取(如灰度、纹理、FCN深度特征等)结合SVM实现初步分割,随后利用医学先验知识改进的CRF进行精细化分割,验证了方法的有效性。
摘要由CSDN通过智能技术生成

目的:对乳腺超声图像进行多类分割(真皮层、脂肪层、腺体层、肿瘤层、肌肉层、背景区域)
第一章绪论(大概内容):
1.介绍课题背景和研究意义
2.国内外研究现状
a.图像的非语义分割方法概述(基于阈值、基于边缘检测、基于区域、基于图论、基于聚类、基于能量函数)
b.图像的语义分割方法概述(传统的模式识别分类器(SVM等)、机器学习方法、深度学习方法)
第二章图像的多种特征提取(大概内容):
1.介绍并对比多种特征提取方案(灰度特征、纹理特征、边缘信息特征、小波变换后提取的纹理特征、FCN深度特征)
第三章基于SVM的图像粗分割(大概内容):
1.介绍SVM理论基础
2.介绍本实验使用的核函数的软间隔支持向量机
3.将第二章介绍的几个方案所提取的特征和标签输入进该SVM中,比较评价指标,选出了FCN深度特征提取方法最好
第四章基于医学先验约束的全连接条件随机场的图像精细分割(大概内容):
1.介绍了全连接条件随机场
2.改进了全连接条件随机场的能量函数,并将先验知识应用到全连接条件随机场中
3.选择了使用SVM进行FCN深度特征提取分割结果较差的图进行实验对比,比较了SVM进行FCN深度特征提取分割方法、加入全连接条件随机场优化后的分割方法、加入本文改进后的全连接条件随机场优化后的分割方法、医生标注的正确类别区域,证明本文工作的有效性

文章原文添加链接描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值