反向传播算法(过程及公式推导)

本文详细介绍了反向传播算法的核心概念,包括变量定义、代价函数和公式推导,并提供了反向传播算法的伪代码。通过学习,读者能够深入理解这一深度学习中的关键算法。
摘要由CSDN通过智能技术生成
                                   
               
反向传播算法(Backpropagation)是目前用来训练人工神经网络(Artificial Neural Network,ANN)的最常用且最有效的算法。其主要思想是:
(1)将训练集数据输入到ANN的输入层,经过隐藏层,最后达到输出层并输出结果,这是ANN的前向传播过程;
(2)由于ANN的输出结果与实际结果有误差,则计算估计值与实际值之间的误差,并将该误差从输出层向隐藏层反向传播,直至传播到输入层;
(3)在反向传播的过程中,根据误差调整各种参数的值;不断迭代上述过程,直至收敛。

        反向传播算法的思想比较容易理解,但具体的公式则要一步步推导,因此本文着重介绍公式的推导过程。


1. 变量定义



        上图是一个三层人工神经网络,layer1至layer3分别是输入层、隐藏层和输出层。如图,先定义一些变量:
         表示第 层的第 个神经元连接到第 层的第 个神经元的权重;
        
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值