【力扣】232. 用栈实现队列

以下为力扣官方题解

题目

请你仅使用两个栈实现先入先出队列。队列应当支持一般队列的支持的所有操作( p u s h 、 p o p 、 p e e k 、 e m p t y ) push、pop、peek、empty) pushpoppeekempty
实现 M y Q u e u e MyQueue MyQueue 类:

  • v o i d p u s h ( i n t x ) void push(int x) voidpush(intx) 将元素 x x x 推到队列的末尾
  • i n t p o p ( ) int pop() intpop() 从队列的开头移除并返回元素
  • i n t p e e k ( ) int peek() intpeek() 返回队列开头的元素
  • b o o l e a n e m p t y ( ) boolean empty() booleanempty() 如果队列为空,返回 t r u e true true ;否则,返回 f a l s e false false

说明:

  • 你只能使用标准的栈操作 —— 也就是只有 p u s h t o t o p , p e e k / p o p f r o m t o p , s i z e , 和 i s e m p t y push to top, peek/pop from top, size, 和 is empty pushtotop,peek/popfromtop,size,isempty 操作是合法的。
  • 你所使用的语言也许不支持栈。你可以使用 l i s t list list 或者 d e q u e deque deque(双端队列)来模拟一个栈,只要是标准的栈操作即可。

进阶:

你能否实现每个操作均摊时间复杂度为 O ( 1 ) O(1) O(1) 的队列?换句话说,执行 n n n 个操作的总时间复杂度为 O ( n ) O(n) O(n) ,即使其中一个操作可能花费较长时间。

示例:

输入
[ " M y Q u e u e " , " p u s h " , " p u s h " , " p e e k " , " p o p " , " e m p t y " ] ["MyQueue", "push", "push", "peek", "pop", "empty"] ["MyQueue","push","push","peek","pop","empty"]
[ [ ] , [ 1 ] , [ 2 ] , [ ] , [ ] , [ ] ] [[], [1], [2], [], [], []] [[],[1],[2],[],[],[]]
输出
[ n u l l , n u l l , n u l l , 1 , 1 , f a l s e ] [null, null, null, 1, 1, false] [null,null,null,1,1,false]
解释
M y Q u e u e m y Q u e u e = n e w M y Q u e u e ( ) ; MyQueue myQueue = new MyQueue(); MyQueuemyQueue=newMyQueue();
m y Q u e u e . p u s h ( 1 ) ; / / q u e u e i s : [ 1 ] myQueue.push(1); // queue is: [1] myQueue.push(1);//queueis:[1]
m y Q u e u e . p u s h ( 2 ) ; / / q u e u e i s : [ 1 , 2 ] ( l e f t m o s t i s f r o n t o f t h e q u e u e ) myQueue.push(2); // queue is: [1, 2] (leftmost is front of the queue) myQueue.push(2);//queueis:[1,2](leftmostisfrontofthequeue)
m y Q u e u e . p e e k ( ) ; / / r e t u r n 1 myQueue.peek(); // return 1 myQueue.peek();//return1
m y Q u e u e . p o p ( ) ; / / r e t u r n 1 , q u e u e i s [ 2 ] myQueue.pop(); // return 1, queue is [2] myQueue.pop();//return1,queueis[2]
m y Q u e u e . e m p t y ( ) ; / / r e t u r n f a l s e myQueue.empty(); // return false myQueue.empty();//returnfalse

提示:

  • 1 < = x < = 9 1 <= x <= 9 1<=x<=9
  • 最多调用 100 100 100 p u s h 、 p o p 、 p e e k push、pop、peek pushpoppeek e m p t y empty empty
  • 假设所有操作都是有效的 (例如,一个空的队列不会调用 p o p pop pop 或者 p e e k peek peek 操作)

官方题解

方法一:双栈

思路

将一个栈当作输入栈,用于压入 p u s h push push 传入的数据;另一个栈当作输出栈,用于 p o p pop pop p e e k peek peek 操作。

每次 p o p pop pop p e e k peek peek 时,若输出栈为空则将输入栈的全部数据依次弹出并压入输出栈,这样输出栈从栈顶往栈底的顺序就是队列从队首往队尾的顺序。

代码

class MyQueue {
    Deque<Integer> inStack;
    Deque<Integer> outStack;

    /** Initialize your data structure here. */
    public MyQueue() {
        inStack = new LinkedList<Integer>();
        outStack = new LinkedList<Integer>();
    }
    
    /** Push element x to the back of queue. */
    public void push(int x) {
        inStack.push(x);
    }
    
    /** Removes the element from in front of queue and returns that element. */
    public int pop() {
        if (outStack.isEmpty())
        {
            in2out();
        }
        return outStack.pop();
    }
    
    /** Get the front element. */
    public int peek() {
        if (outStack.isEmpty())
        {
            in2out();
        }
        return outStack.peek();
    }
    
    /** Returns whether the queue is empty. */
    public boolean empty() {
        return inStack.isEmpty() && outStack.isEmpty();
    }

    private void in2out()
    {
        while (!inStack.isEmpty())
        {
            outStack.push(inStack.pop());
        }
    }
}

/**
 * Your MyQueue object will be instantiated and called as such:
 * MyQueue obj = new MyQueue();
 * obj.push(x);
 * int param_2 = obj.pop();
 * int param_3 = obj.peek();
 * boolean param_4 = obj.empty();
 */

复杂度分析

  • 时间复杂度: p u s h push push e m p t y empty empty O ( 1 ) O(1) O(1) p o p pop pop p e e k peek peek 为均摊 O ( 1 ) O(1) O(1)。对于每个元素,至多入栈和出栈各两次,故均摊复杂度为 O ( 1 ) O(1) O(1)
  • 空间复杂度: O ( n ) O(n) O(n)。其中 n n n 是操作总数。对于有 n n n p u s h push push 操作的情况,队列中会有 n n n 个元素,故空间复杂度为 O ( n ) O(n) O(n)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值