最短路径问题算法总结

1、固定起点的最短路——Dijkstra算法

最短路是一条路径,且最短路的任意一段也是最短路。假设在u0——v0的最短路中只取一条,则从u0到其余顶点的最短路将构成一颗以u0为根的树。因此可以采用树生长的过程来求指定顶点到其余顶点的最短路,实现这一过程的方法是Dijkstra算法。

目标:单源,非负(不能有负权)

时间复杂度:O(n^2)

步骤

1.用集合1表示已知点,用集合2表示未求点。则1中最初只有start(起始点)这个点,集合2中有其他n-1个点。

2.在集合2中找到一个到start距离最近的顶点k,距离为d[k];

3.把顶点k加到集合1中,同时修改集合2中的剩余顶点 j 的d[j],判断d[j]是否经过k后变短,如果变短修改d[j];

if(d[k]+a[k][j]<d[j]) d[j] = d[k]+d[k][j];

4.重复1,直到集合2为空为止.

伪代码如下

 1 for(int i=1;i<=t;i++)
 2         dis[i]=a[st][i];
 3     vis[st]=1;dis[st]=0;
 4     for(int i=1;i<t;i++)
 5     {
 6         int minn=9999999;
 7         int k=0;
 8         for(int j=1;j<=t;j++)
 9             if(!(vis[j])&&(dis[j]<minn))
10             {
11                 minn=dis[j];
12                 k=j;
13             }
14         if(k==0) break ;
15         vis[k]=1;
16         for(int j=1;j<=t;j++)
17             if(!(vis[j])&&(dis[k]+a[k][j]<dis[j]))
18                 dis[j]=dis[k]+a[k][j]; 
19     }

2、每对顶点之间的最短路——Floyd算法

基本原理
根据图的传递闭包思想:

if(d[i][k]+d[j][k])<d[i][j])
    d[i][j]=d[i][k]+d[k][j]

即每次找一个“中转站K”,如果d[i][k]+d[j][k])<d[i][j],则更新d[i][j].即更新i到j之间的距离。

时间复杂度:O(n^3)

初始化条件

d[i][i]=0;//自己到自己的距离为0;

d[i][j]=边权;//i与j有直接相连的边。

d[i][j]=正无穷;//i与j没有直接相连的边。

算法核心

1 for(int k=1;k<=n;k++)
2         for(int i=1;i<=n;i++)
3             for(int j=1;j<=n;j++){
4                 if(a[i][k]+a[k][j]<a[i][j]){
5                     a[i][j]=a[i][k]+a[k][j];
6                 }
7             }

补充
可定义path[i][j]记录i到j的最短路径中j的前驱顶点,可用于输出最小路径.

初始化:i到j有边,则path[i][j]=i;path[j][i]=j;
i到j不连通,则path[i][j]=-1;

核心代码:

1 for(int k=1;k<=n;k++)
2          for(int i=1;i<=n;i++)
3              for(int j=1;j<=n;j++){
4                  if(a[i][k]+a[k][j]<a[i][j]){
5                      a[i][j]=a[i][k]+a[k][j];
6                      path[i][j]=path[k][j];
7                  }
8              }

3、Bellman-ford算法

Bellman——ford 算法N次迭代就可以判断图中是否有“负环”。

它取两种边有两种方法:

——扫描每一点的邻接表。
——用有序点对(x, y)记录边时,可直接取边。但要注意对无向边,要注意(y , x)也要松弛.

对于求s到某点的最短距离,可能因为其它地方有“负环”而出现问题,要预处理。

时间复杂度:O(N*E)

步骤:1.初始化每点到s点的距离为正无穷。

2.取所有边(x, y),看x能否对y松弛.

3.如果没有任何松弛,则结束break.

4.如果松弛次数<N, 转(2);

5.如果第n次还能松弛,图中有“负环”.

伪代码略(不常用,一般用队列优化的SPFA)。

4、SPFA(对Bellman-ford算法的优化)

Bellman-ford算法中,每次都要检查所有的边。这个看起来比较浪费,对于边(x, y),如果上一次dis[x],没有改变,则本次的检查显然是多余的。

我们每次只要从上次刚被松弛过的点x,来看看x能不能松弛其它点即可。

SPFA算法中用BFS中的队列来存放刚被“松弛”过的点x,来看看x能不能松弛其它点即可。

时间复杂度:O(K*E)

算法描述:(伪代码)

 1 void spfa(int k)
 2 {
 3     memset(dis, 0x3f, sizeof(dis));
 4     memset(vis, 0, sizeof(vis));
 5     dis[k] = 0;
 6     vis[k] = 1;
 7     q.push(k);
 8     while(!q.empty())
 9     {
10         int x = q.front();
11         vis[k] = 0;
12         q.pop();
13         for(int i = head[x];i;i = e[i].next)
14         {
15             int tmp = e[i].to;
16             if(dis[x] + e[i].v < dis[tmp])
17             {
18                 dis[tmp] = dis[x] + e[i].v;
19                 if(!vis[tmp])
20                 {
21                     vis[tmp] = 1;
22                     q.push(tmp);
23                 }
24             }
25         }
26     }
27 }

值得注意的是,该算法在特殊构造的图中很可能退化为O(N*M),需要谨慎使用。

于是,在这种情况下,出现了一种算法,时间复杂度优秀且稳定。

这就是堆优化的Dijkstra算法

5、堆优化的Dijkstra算法(对Dijkstra算法的优化)

其实我们发现,在每次贪心修改dis[]数组时,仍做了许多不必要的工作。

此时我们就可以用堆来维护,优化算法。

具体见代码:

 1 typedef pair<int, int> pii;
 2 priority_queue <pii, vector<pii>, greater<pii> > q;
 3 int dis[N], vis[N];
 4 void dijkstra(int k){
 5     memset(dis, 0x3f, sizeof(dis));
 6     dis[k] = 0;
 7     q.push(make_pair(dis[k], k));
 8     while(!q.empty()){
 9         pii tmp = q.top();
10         q.pop();
11         int x = tmp.second;
12         if(vis[x]) continue;
13         vis[x] = 1;
14         for(int i = head[x];i;i = e[i].next){
15             int y = e[i].to;
16             if(dis[x] + e[i].v < dis[y]){
17                 dis[y] = dis[x] + e[i].v;
18                 if(!vis[y])
19                     q.push(make_pair(dis[y], y));
20             } 
21         }
22     }
23 }

复制代码
   值得注意的是,使用dijkstra算法一定要注意图中是否存在负权边!否则后果你懂得。

总结一下,floyd算法适合暴力拿取部分分,SPFA算法时间复杂度优秀但不稳定,堆优化的dijkstra算法时间复杂度优秀且稳定,但图中不能有负权边。

本文参考文章地址:https://www.cnblogs.com/smilke/articles/10694952.html

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值