建立双向边的图,使用sz[i]
表示每个点的子节点的数量,设当前节点为u
,子节点为v
,那么先去搜出来v
的节点数量(含v
自己),那么u->v
这条边的费用为:(n - 2 * sz[v]) * w[i]
,最后将v
这个点的节点数量加到u
上即可。
搜索的时候记录父节点,防止向回搜索。
#include <iostream>
#include <cstring>
#include <cmath>
using namespace std;
const int N = 1e6 + 10 , M = N * 2;
int n;
int sz[N];
int h[N] , e[M] , ne[M] , w[M] , idx;
long long res;
void add(int a , int b , int c)
{
e[idx] = b , ne[idx] = h[a] , w[idx] = c , h[a] = idx ++;
}
void dfs(int u , int father)
{
sz[u] = 1;
for(int i = h[u]; i != -1; i = ne[i])
{
int j = e[i];
if(j == father) continue; // 防止向回搜索
dfs(j , u); // 搜索子节点
res += (long long)(abs(n - 2 * sz[j])) * w[i];
sz[u] += sz[j];
}
}
int main()
{
cin >> n;
memset(h , -1 , sizeof h);
for(int i = 1; i < n; i ++)
{
int a , b , c;
cin >> a >> b >> c;
add(a , b , c) , add(b , a , c);
}
dfs(1 , -1);
cout << res << endl;
return 0;
}