1.选择排序
具体算法描述如下:
1.找到数组中最小的那个元素
2.将它和数组的第一个元素交换位置(如果第一个元素就是最小元素那么它就 和自己交换)
3.在剩下的元素中找到最小的元素,将它与数组的第二个元素交换位置
4.如此往复,直到将整个数组排序
动图演示:
代码实现:
public static void SelectSort(int[] arr){
for(int i=0;i<arr.length-1;i++){
int min = i;//选择待排序数列中最小数的下标
for(int j=i+1;j<arr.length-1;j++){
if(arr[min]>arr[j]){
min = j;
}
}
if(min!=i){
int temp = arr[i];
arr[i] = arr[min];
arr[min] = temp;
}
}
}
2.插入排序
具体算法描述如下:
1.从第一个元素开始,该元素可以认为已经被排序
2.取出下一个元素,在已经排序的元素序列中从后向前扫描
3.如果该元素(已排序)大于新元素,将该元素移到下一位置
4.重复步骤 3,直到找到已排序的元素小于或者等于新元素的位置
将新元素插入到该位置后
5.重复步骤 2 ~ 5,直至最后一个元素。
动图演示:
代码实现:
public class InsertSort {
private static void insertSort(int[] arr) {
int j; // 已排序列表下标
int t; // 待排序元素
for (int i = 1; i < arr.length; i++) {
if (arr[i] < arr[i - 1]) {
t = arr[i]; // 赋值给待排序元素
for (j = i - 1; j >= 0 && arr[j] > t; j--) {
arr[j + 1] = arr[j]; // 从后往前遍历已排序列表,逐个和待排序元素比较,如果已排序元素较大,则将它后移
}
arr[j + 1] = t; // 将待排序元素插入到正确的位置
}
}
}
3.冒泡排序
具体算法描述如下:
1.比较相邻的元素。如果第一个比第二个大,就交换他们两个。
2.对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。
3.针对所有的元素重复以上的步骤,除了最后一个。
4.持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
动图演示:
代码实现:
public class BubbleSort {
public static void sort(int[] arr) {
for (int i = 0; i < arr.length-1; i++) {
for (int j = 0; j < arr.length - i - 1; j++) {
//如果当前元素比后一位元素大 交换位置
if (arr[j] > arr[j + 1]) {
int temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
}
}
代码优化
假如从开始的第一对到结尾的最后一对,相邻的元素之间都没有发生交换的操作,这意味着右边的元素总是大于等于左边的元素,此时的数组已经是有序的了,我们无需再对剩余的元素重复比较下去了。
public class BubbleSort {
public static int[] bubbleSort(int[] arr) {
if (arr == null || arr.length < 2) {
return arr;
}
int n = arr.length;
for (int i = 0; i < n; i++) {
boolean flag = true;
for (int j = 0; j < n -i - 1; j++) {
if (arr[j + 1] < arr[j]) {
flag = false;
int t = arr[j];
arr[j] = arr[j+1];
arr[j+1] = t;
}
}
//一趟下来是否发生位置交换
if(flag)
break;
}
return arr;
}
}
4.归并排序
具体算法描述如下:
1.申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
2.设定两个指针,最初位置分别为两个已经排序序列的起始位置
3.比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
4.重复步骤 3 直到某一指针到达序列尾
5.将另一序列剩下的所有元素直接复制到合并序列尾
动图演示:
代码实现:
public static void mergeSort(int[] arrays, int left, int right) {
// 如果数组还可以拆分
if (left < right) {
//数组的中间位置
int middle = (left + right) / 2;
//拆分左边数组
mergeSort(arrays, left, middle);
//拆分右边数组
mergeSort(arrays, middle + 1, right);
//合并
merge(arrays, left, middle, right);
}
}
/**
* 合并数组
*/
public static void merge(int[] arr, int left, int middle, int right) {
//申请合并空间 大小为两个已经排序序列之和
int[] temp = new int[right - left + 1];
//i 和 j为两个已经排好序的数组的起始位置
int i = left;
int j = middle + 1;
int k = 0;
//排序
while (i <= middle && j <= right) {
//将比较小的数组放入合并空间
if (arr[i] < arr[j]) {
temp[k++] = arr[i++];
} else {
temp[k++] = arr[j++];
}
}
//将左边剩余元素写入合并空间
while (i <= middle) {
temp[k++] = arr[i++];
}
//将右边剩余的元素写入合并空间
while (j <= right) {
temp[k++] = arr[j++];
}
//将排序后的数组写回原来的数组
for (int l = 0; l < temp.length; l++) {
arr[l + left] = temp[l];
}
}
非递归式的归并排序
public class MergeSort {
// 非递归式的归并排序
public static int[] mergeSort(int[] arr) {
int n = arr.length;
// 子数组的大小分别为1,2,4,8...
// 刚开始合并的数组大小是1,接着是2,接着4....
for (int i = 1; i < n; i += i) {
//进行数组进行划分
int left = 0;
int mid = left + i - 1;
int right = mid + i;
//进行合并,对数组大小为 i 的数组进行两两合并
while (right < n) {
// 合并函数和递归式的合并函数一样
merge(arr, left, mid, right);
left = right + 1;
mid = left + i - 1;
right = mid + i;
}
// 还有一些被遗漏的数组没合并,千万别忘了
// 因为不可能每个字数组的大小都刚好为 i
if (left < n && mid < n) {
merge(arr, left, mid, n - 1);
}
}
return arr;
}
}
5.快速排序
具体算法描述如下:
1.从数列中挑出一个元素,称为“基准”(pivot),
2.重新排序数列,所有比基准值小的元素摆放在基准前面,所有比基准值大的元素摆在基准后面(相同的数可以到任何一边)。在这个分割结束之后,该基准就处于数列的中间位置。这个称为分割(partition)操作。
3.递归地把小于基准值元素的子数列和大于基准值元素的子数列排序。
递归到最底部时,数列的大小是零或一,也就是已经排序好了。这个算法一定会结束,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。
动图演示:
代码实现:
public static void sort(int[] arr, int head, int tail) {
if (head >= tail || arr == null || arr.length <= 1) {
return;
}
//设置数组的起始位置 i 结束位置j 基准 pivot 为数组的中间
int i = head, j = tail, pivot = arr[(head + tail) / 2];
while (i <= j) {
//当数组小于基准 循环结束后 相当于i所处的位置的值为大于基准的元素
while (arr[i] < pivot) {
++i;
}
//当数组大于基准 循环结束后 相当于j所处的位置的值为小于于基准的元素
while (arr[j] > pivot) {
--j;
}
//如果i<j 那么则将交互i j对应位置的值
if (i < j) {
int t = arr[i];
arr[i] = arr[j];
arr[j] = t;
//将指针继续移动
++i;
--j;
} else if (i == j) {
//如果i=j 那么说明本次排序已经结束 将i++ 如果这里不使用i++ ,
//那么后面的sort(arr,i,tail)将改为arr(arr,i+1,tail)
++i;
}
}
//继续将数组分割
sort(arr, head, j);
sort(arr, i, tail);
}