代码运行环境:Intellij IDEA
注意修改类名,Eclipse需要加package
- 打印九九乘法表
public class Main {
public static void main(String[] args) {
for (int i = 1;i<=9;i++){
for (int j = 1;j<=i;j++){
System.out.print(j+"x"+i+"="+i*j+"\t");
}
System.out.println();//换行
}
}
}
运行结果:
- 水仙花数
打印1000以内的所有水仙花数,“水仙花数”是指一个三位数的各位数字的立方和等于这个数本身,例如153是“水仙花数”,因为153=1^3 + 5^3 +3^3
public class narcissistic_number {
public static void main(String[] args) {
for (int i = 100; i <= 1000; i++){
int a = i;
int j = 0;
int sum = 0;
while (a > 0){
j = a%10;
sum += j * j * j;
a = a/10;
}
if (i == sum) {
System.out.println(i);
}
}
}
}
运行结果:
- 青蛙跳台阶
一共有n个台阶,一只青蛙一次只能跳一阶或两阶,那么一共有多少种跳到顶端的方案?例如n=2,那么一共有两种方案,一次性跳两阶或是每次跳一阶。
分析:类似于斐波那契数列,可采用递归的方法实现
图例展示:
第一种方案:每次跳一阶
第二种方案:一次跳两阶
当n=3时,第一种方案:先跳一阶,那么就以第一阶为起点,后面就是上述的两阶情况。
第二种方案:先跳两阶,那么就以第二阶为起点,后面为一阶的情况。
也就是说:f(3)=f(2)+f(1),依此类推,f(n)=f(n-1)+f(n-2),递归求解即可。
import java.util.Scanner;
public class Frog_jump {
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
System.out.print("请输入青蛙需要跳的台阶数:");
int i = s.nextInt();
int n;
n = Frog(i);
System.out.println("青蛙跳"+i+"阶台阶有" + n + "种方案");
}
private static int Frog(int i) {
if (i == 1) {
return 1;
}
if (i == 2) {
return 2;
}
return Frog(i-1)+Frog(i-2);
}
}
运行结果: