问题描述
有一长度为N(1<=N<=10)的地板,给定两种不同瓷砖:一种长度为1,另一种长度为2,数目不限。要将这个长度为N的地板铺满,一共有多少种不同的铺法?
例如,长度为4的地面一共有如下5种铺法:
4=1+1+1+1
4=2+1+1
4=1+2+1
4=1+1+2
4=2+2
编程用递归的方法求解上述问题。
输入格式
只有一个数N,代表地板的长度
输出格式
输出一个数,代表所有不同的瓷砖铺放方法的总数
例子
样例输入
4
样例输出
5
思路
基础题,用简单递归即可轻松解决。设置好递归出口就行了。
代码呈上:
#include <stdio.h>
int num=0;
int n;
void f(int a)
{
if(a==n)
{
num++;
return;
}
if(a>n)
{
return;
}
f(a+1);
f(a+2);
}
int main ()
{
scanf("%d",&n);
f(0);
printf("%d",num);
return 0;
}