给定 n
组 ai,pi
,其中 pi
是质数,求 ai
模 pi
的乘法逆元,若逆元不存在则输出 impossible。
注意:请返回在 0∼p−1
之间的逆元。
乘法逆元的定义
若整数 b,m
互质,并且对于任意的整数 a
,如果满足 b|a
,则存在一个整数 x
,使得 ab≡a×x(modm)
,则称 x
为 b
的模 m
乘法逆元,记为 b−1(modm)
。
b
存在乘法逆元的充要条件是 b
与模数 m
互质。当模数 m
为质数时,bm−2
即为 b
的乘法逆元。
输入格式
第一行包含整数 n
。
接下来 n
行,每行包含一个数组 ai,pi
,数据保证 pi
是质数。
输出格式
输出共 n
行,每组数据输出一个结果,每个结果占一行。
若 ai
模 pi
的乘法逆元存在,则输出一个整数,表示逆元,否则输出 impossible。
数据范围
1≤n≤105
,
1≤ai,pi≤2∗109
输入样例:
3
4 3
8 5
6 3
输出样例:
1
2
impossible
主要就是数论的知识,这道题实际可以转化为求a的p-2次方mod p。
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 100010;
int qmi(int a, int k, int p)
{
int res = 1;
while(k)
{
if(k & 1)
{
res = (long long)res * a % p;
}
k >>= 1;
a = (long long)a * a % p;
}
return res;
}
int main ()
{
int n;
cin >> n;
while(n -- )
{
int a, p;
cin >> a >> p;
int res = qmi(a, p - 2, p);
if(a % p)
cout << res << endl;
else
cout << "impossible" << endl;
}
return 0;
}