在一个 n * m
的二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。
现有矩阵 matrix 如下:
[
[1, 4, 7, 11, 15],
[2, 5, 8, 12, 19],
[3, 6, 9, 16, 22],
[10, 13, 14, 17, 24],
[18, 21, 23, 26, 30]
]
给定 target =5
,返回true
。
给定 target =20
,返回false
。
分析:
可以从二维数组的右上角开始观察,发现类似于一个二叉搜索树,15的左子树都比15小,右子树都比15大。
class Solution {
public boolean findNumberIn2DArray(int[][] a, int target) {
if (a == null || a.length == 0 || a[0].length == 0) return false;
int rows = a.length;
int cols = a[0].length;
// 从右上角开始遍历
int row = 0, col = cols - 1;
while (row < rows && col >= 0) {
int curNum = a[row][col];
if (curNum == target) return true;
if (curNum > target) col--;
else row++;
}
return false;
}
}
复杂度分析
- 时间复杂度:O(n+m)。访问到的下标的行最多增加 n 次,列最多减少 m 次,因此循环体最多执行 n + m 次
- 空间复杂度:O(1)