代码学习记录39---动态规划

随想录日记part39

t i m e : time: time 2024.04.09



主要内容:今天开始要学习动态规划的相关知识了,今天的内容主要涉及:
买卖股票的最佳时机。



动态规划五部曲:
【1】.确定dp数组以及下标的含义
【2】.确定递推公式
【3】.dp数组如何初始化
【4】.确定遍历顺序
【5】.举例推导dp数组

Topic1买卖股票的最佳时机

题目:
给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。你只能选择某一天买入这只股票,并选择在 未来的某一个不同的日子卖出该股票。设计一个算法来计算你所能获取的最大利润。返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。

输入: [ 7 , 1 , 5 , 3 , 6 , 4 ] [7,1,5,3,6,4] [7,1,5,3,6,4]
输出: 5 5 5
解释: 在第2天(股票价格=1)的时候买入,在第5天(股票价格=6)的时候卖出,最大利润=6-1= 5 。注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。

思路:

接下来进行动规五步曲:
1.确定dp数组以及下标的含义:
dp[i]表示i+1天的最大利润;
2.确定递推公式:
if (prices[i] - tem > dp[i - 1]) { dp[i] = prices[i] - tem; } else { dp[i] = dp[i - 1]; if (prices[i] < tem) { tem = prices[i]; } }

3.dp数组如何初始化
dp[0] = 0;
int tem = prices[0];
4.确定遍历顺序
5.举例推导dp数组

代码如下:

class Solution {
    public int maxProfit(int[] prices) {
        int l = prices.length;
        if (l == 1)
            return 0;
        // dp[i]表示i+1天的最大利润;
        int[] dp = new int[l + 1];
        // 初始化
        dp[0] = 0;
        int tem = prices[0];
        for (int i = 1; i < l; i++) {
            if (prices[i] - tem > dp[i - 1]) {
                dp[i] = prices[i] - tem;
            } else {
                dp[i] = dp[i - 1];
                if (prices[i] < tem) {
                    tem = prices[i];
                }
            }
        }
        return dp[l - 1];
    }
}


时间复杂度 O ( n ) O(n) O(n)
空间复杂度 O ( n ) O(n) O(n)



Topic2买卖股票的最佳时机II

题目:

给你一个整数数组 prices ,其中 prices[i] 表示某支股票第 i 天的价格。在每一天,你可以决定是否购买和/或出售股票。你在任何时候最多只能持有一股股票。你也可以先购买,然后在同一天出售。返回你能获得的最大利润 。

输入: p r i c e s = [ 7 , 1 , 5 , 3 , 6 , 4 ] prices = [7,1,5,3,6,4] prices=[7,1,5,3,6,4]
输出: 7 7 7
解释:
在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4 。随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6 - 3 = 3 。总利润为 4 + 3 = 7 。
思路:

接下来进行动规五步曲:
1.确定dp数组以及下标的含义:
dp[i][0] 表示第i天持有股票所得现金。
dp[i][1] 表示第i天不持有股票所得最多现金
2.确定递推公式:
如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来:

  • 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
  • 第i天买入股票,所得现金就是昨天不持有股票的所得现金减去今天的股票价格 即:dp[i - 1][1] - prices[i]

再来看看如果第i天不持有股票即dp[i][1]的情况, 依然可以由两个状态推出来

  • 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
  • 第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金即:prices[i] + dp[i - 1][0]

3.dp数组如何初始化
dp[0][0]=-prices[0];
dp[0][1]=0;
4.确定遍历顺序
5.举例推导dp数组

class Solution {
    public int maxProfit(int[] prices) {
        int len=prices.length;
        int[][] dp=new int[len][2];
        dp[0][0]=-prices[0];
        dp[0][1]=0;
        for(int i=1;i<len;i++){
            dp[i][0]=Math.max(dp[i-1][0],dp[i-1][1]-prices[i]);
            dp[i][1]=Math.max(dp[i-1][0]+prices[i],dp[i-1][1]);
        }
        return dp[len-1][1];
    }
}

时间复杂度 O ( n ) O(n) O(n)
空间复杂度 O ( n ) O(n) O(n)



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值