深度学习
DCLe
多看书,多练习,多锻炼
展开
-
初始卷积(一)
卷积的运算以及形式 import numpy as np data = [1, 2, 3, 4, 5] kernel = [6, 7, 8] list1 = np.convolve(data, kernel, 'full') #全卷积,有一个卷积核生效就输出 list2 = np.convolve(data, kernel, 'same') #同纬卷积,卷积核中间的那个生效则输出 list3 = np.convolve(data, kernel, 'valid') #有效卷积,卷积核全生效.原创 2021-10-09 16:40:50 · 115 阅读 · 0 评论 -
深度学习 | 三个概念:Epoch, Batch, Iteration
Epoch(时期): 当一个完整的数据集通过了神经网络一次并且返回了一次,这个过程称为一次>epoch。(也就是说,所有训练样本在神经网络中都 进行了一次正向传播 和一次反向传播 ) 再通俗一点,一个Epoch就是将所有训练样本训练一次的过程。 然而,当一个Epoch的样本(也就是所有的训练样本)数量可能太过庞大(对于计算机而言),就需要把它分成多个小块,也就是就是分成多个Batch 来进行训练。** Batch(批 / 一批样本): 将整个训练样本分成若干个Batch。 Batch_Size(批大.转载 2021-09-14 18:00:50 · 259 阅读 · 0 评论