推荐系统之协同过滤算法
1、介绍协同过滤算法(Collaborative Filtering) 是比较经典常用的推荐算法,从1992年一直延续至今。所谓协同过滤算法,基本思想是根据用户的历史行为数据的挖掘发现用户的兴趣爱好,基于不同的兴趣爱好对用户进行划分并推荐兴趣相似的商品给用户。协同过滤算法主要分为两类:- 基于物品的协同过滤算法:给用户推荐与他之前喜欢的物品相似的物品- 基于用户的协同过滤算法:给用户推荐与他兴趣相似的用户喜欢的物品2、基于用户的协同过滤算法(UserCF)UserCF,思想其实比较简单,当一个用户



