归并排序

本文详细介绍了归并排序的原理,通过递归将数组分为左右两部分,分别排序后进行合并,确保整体有序。使用了外排序方法,时间复杂度为O(N*logN),空间复杂度为O(N)。代码示例展示了如何实现归并排序的过程,包括关键的merge函数。
摘要由CSDN通过智能技术生成
  1. 整体就是一个简单的递归,左边排好序、右边排好序、让其整体有序
  2. 让其整体有序的过程里用了外排序方法
  3. 利用master公式来求解时间复杂度
  4. 归并排序的实质

时间复杂度O(N*logN),额外空间复杂度O(N)

/*
 *归并排序
 *一个数组从中间开始 先让左侧排好序 再让右侧排好序
 *432651
 *左侧就是234 右侧156
 *然后两个新的数组从下标1开始比较
 *0位置右侧小放1然后右侧1位置大于左侧0位置放2然后依次放3 4 5 6
 *123456
 */
public class Mergesort {
	
	public static void mergeSort(int[] arr) {
		if(arr == null || arr.length < 2) {
			return;
		}
		process(arr, 0, arr.length - 1);
	}
	
	public static void process(int[] arr, int L, int R) {
		if(L == R) {
			return;
		}
		//mid = (R+L)/2 --> mid = L+(R-L)/2 除2相当于向右移一位
		int mid = L + ((R - L) >> 1);
		process(arr, L, mid);
		process(arr, mid + 1, R);
		merge(arr, L, mid, R);
	}
	
	public static void merge(int[] arr, int L, int M, int R) {
		int[] help = new int[R - L + 1];
		int i = 0;
		int p1 = L;
		int p2 = M + 1;
		while(p1 <= M && p2 <= R) {
			help[i++] = arr[p1] <= arr[p2] ? arr[p1++] : arr[p2++];
		}
		while(p1 <= M) {
			help[i++] = arr[p1++];
		}
		while(p2 <= R) {
			help[i++] = arr[p2++];
		}
		for(i = 0; i < help.length; i++) {
			arr[L + i] = help[i];
		}
	}

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值