堆和堆排序

本文详细介绍了堆这种数据结构,包括大顶堆和小顶堆的概念,以及如何在数组中实现堆的插入、删除和堆化操作。重点讲解了堆排序的过程,包括建堆(O(n))和排序(O(nlogn)),并指出堆排序是原地、非稳定排序算法。
摘要由CSDN通过智能技术生成
       堆这种数据结构的应用场景非常多,最经典的莫过于堆排序了。堆排序是一种原地的、时间复杂度为 的排序算法。

如何理解

      只要满足这两点,它就是一个堆。 堆是一个完全二叉树; 堆中每一个节点的值都必须大于等于(或小于等于)其子树中每个节点的值。对于每个节点的值都大于等于子树中每个节点值的堆,我们叫作“大顶堆”。对于每个节点的值都小于等于子树中每个节点值的堆,我们叫作“小顶堆”。

  如何实现一个堆?

          完全二叉树比较适合用数组来存储。用数组来存储完全二叉树是非常节省存储空间的。因为我们不需要存储左右子节点的指针,单纯地通过数组的下标,就可以找到一个节点的左右子节点和父节点。

从图中我们可以看到,数组中下标为 的节点的左子节点,就是下标为 的节点,右子节点就是下标为 的节点,父节点就是下标为的节点。

1. 往堆中插入一个元素

        往堆中插入一个元素后,我们需要继续满足堆的两个特性。如果我们把新插入的元素放到堆的最后,你可以看我画的这个图,是不是不符合堆的特性了?于是,我们就需要进行调整,让其重新满足堆的特性,这个过程我们起了一个名字,就叫作堆化 (heapify)。堆化实际上有两种,从下往上和从上往下。这里我先讲从下往上 的堆化方法。
堆化非常简单,就是顺着节点所在的路径,向上或者向下,对比,然后交换。
public class Heap {
    private int[] a; // 数组,从下标 1 开始存储数据
    private int n; // 堆可以存储的最大数据个数
    private int count; // 堆中已经存储的数据个数
    public Heap(int capacity) {
        a = new int[capacity + 1];
        n = capacity;
        count = 0;
    }
    public void insert(int data) {
        if (count >= n) return; // 堆满了
        ++count;
        a[count] = data;
        int i = count;
        while (i/2 > 0 && a[i] > a[i/2]) { // 自下往上堆化
            swap(a, i, i/2); // swap() 函数作用:交换下标为 i 和 i/2 的两个元素
            i = i/2;
        }
     }
 }

2. 删除堆顶元素

       从堆的定义的第二条中,任何节点的值都大于等于(或小于等于)子树节点的值,我们可以
发现,堆顶元素存储的就是堆中数据的最大值或者最小值。假设我们构造的是大顶堆,堆顶元素就是最大的元素。当我们删除堆顶元素之后,就需要把第二大的元素放到堆顶,那第二大元素肯定会出现在左右子节点中。然后我们再迭代地删除第二大节点,以此类推,直到叶子节点被删除。 这里我也画了一个分解图。不过这种方法有点问题,就是最后堆化出来的堆并不满足完全二叉树的特性。
实际上,我们稍微改变一下思路,就可以解决这个问题。你看我画的下面这幅图。我们把最后一个节点放到堆顶,然后利用同样的父子节点对比方法。对于不满足父子节点大小关系的,互换两个节点,并且重复进行这个过程,直到父子节点之间满足大小关系为止。这就是 从上往下的堆化方法 。 因为我们移除的是数组中的最后一个元素,而在堆化的过程中,都是交换操作,不会出现数组中的“空洞”,所以这种方法堆化之后的结果,肯定满足完全二叉树的特性。
public void removeMax() {
    if (count == 0) return -1; // 堆中没有数据
    a[1] = a[count];
    --count;
    heapify(a, count, 1);
    }

    private void heapify(int[] a, int n, int i) { // 自上往下堆化
        while (true) {
            int maxPos = i;
            if (i*2 <= n && a[i] < a[i*2]) maxPos = i*2;
            if (i*2+1 <= n && a[maxPos] < a[i*2+1]) maxPos = i*2+1;
            if (maxPos == i) break;
            swap(a, i, maxPos);
            i = maxPos;
        }
}
        我们知道,一个包含 n 个节点的完全二叉树,树的高度不会超过 log 2 n 。堆化的过程是顺 着节点所在路径比较交换的,所以堆化的时间复杂度跟树的高度成正比,也就是 O(log n)。插入数据和删除堆顶元素的主要逻辑就是堆化,所以,往堆中插入一个元素和删除堆顶元素的时间复杂度都是 O(log n)

如何基于堆实现排序?

        有时间复杂度是 O(n 2 ) 的冒泡排序、插入排序、选择排序,有时间复杂度是 O(n log n) 的归并排序、快速排序,还有线性排序。这里我们借助于堆这种数据结构实现的排序算法,就叫作堆排序。这种排序方法的时间复杂度非常稳定,是 O(n log n) ,并且它还是原地排序算法。如此优秀,它是怎么做到的呢?我们可以把堆排序的过程大致分解成两个大的步骤,建堆 排序
1. 建堆
我们首先将数组原地建成一个堆。所谓“原地”就是,不借助另一个数组,就在原数组上操作。建堆的过程,有两种思路。第一种是借助我们前面讲的,在堆中插入一个元素的思路。尽管数组中包含 n 个数据,但是我们可以假设,起初堆中只包含一个数据,就是下标为 1 的数据。然后,我们调用前面讲的插入操作,将下标从 2 n 的数据依次插入到堆中。这样我们就将包含 n 个数据的数组,组织成了堆。第二种实现思路,跟第一种截然相反,也是我这里要详细讲的。第一种建堆思路的处理过程是从前往后处理数组数据,并且每个数据插入堆中时,都是从下往上堆化。而第二种实现思路,是从后往前处理数组,并且每个数据都是从上往下堆化。
我举了一个例子,并且画了一个第二种实现思路的建堆分解步骤图,你可以看下。因为叶子节点往下堆化只能自己跟自己比较,所以我们直接从第一个非叶子节点开始,依次堆化就行了
private static void buildHeap(int[] a, int n) {
 for (int i = n/2; i >= 1; --i) {
 heapify(a, n, i);
 }
}
private static void heapify(int[] a, int n, int i) {
 while (true) {
 int maxPos = i;
 if (i*2 <= n && a[i] < a[i*2]) maxPos = i*2;
 if (i*2+1 <= n && a[maxPos] < a[i*2+1]) maxPos = i*2+1;
 if (maxPos == i) break;
 swap(a, i, maxPos);
 i = maxPos;
 }
}
在这段代码中,我们对下标从n/2开始到1的数据进行堆化,下标是n/2+1到n的节点是叶子节点,我们不需要堆化。实际上,对于完全二叉树来说,下标从n/2+1到n的节点都是叶子节点。
建堆操作的时间复杂度是多少呢? 每个节点堆化的时间复杂度是O(logn) ,那n/2+1个节点堆化的总时间复杂度是不是就是O(nlogn) 呢?这个答案虽然也没错,但是这个值还是不够精确。实际上,堆排序的建堆过程的时间复杂度是O(n) 。我带你推导一下。 因为叶子节点不需要堆化,所以需要堆化的节点从倒数第二层开始。每个节点堆化的过程中,需要比较和交换的节点个数,跟这个节点的高度k成正比。我把每一层的节点个数和对应的高度画了出来,你可以看看。我们只需要将每个节点的高度求和,得出的就是建堆的时间复杂度。
我们将每个非叶子节点的高度求和,就是下面这个公式:
这个公式的求解稍微有点技巧,不过我们高中应该都学过:把公式左右都乘以 2 ,就得到另一个公式 S2 。我们将 S2 错位对齐,并且用 S2 减去 S1 ,可以得到 S
S 的中间部分是一个等比数列,所以最后可以用等比数列的求和公式来计算,最终的结果就是下面图中画的这个样子。
因为 h = log 2 n ,代入公式 S ,就能得到 S = O(n) ,所以,建堆的时间复杂度就是O(n)。
2. 排序
建堆结束之后,数组中的数据已经是按照大顶堆的特性来组织的。数组中的第一个元素就是堆顶,也就是最大的元素。我们把它跟最后一个元素交换,那最大元素就放到了下标为 n 的位置。这个过程有点类似上面讲的“删除堆顶元素”的操作,当堆顶元素移除之后,我们把下标为n 的元素放到堆顶,然后再通过堆化的方法,将剩下的 n − 1 个元素重新构建成堆。堆化完成之后,我们再取堆顶的元素,放到下标是 n − 1 的位置,一直重复这个过程,直到最后堆中只剩下标为 1 的一个元素,排序工作就完成了。
// n 表示数据的个数,数组 a 中的数据从下标 1 到 n 的位置。
public static void sort(int[] a, int n) {
    buildHeap(a, n);
    int k = n;
    while (k > 1) {
        swap(a, 1, k);
        --k;
        heapify(a, k, 1);
    }
}
整个堆排序的过程,都只需要极个别临时存储空间,所以堆排序是原地排序算法。堆排序包括建堆和排序两个操作,建堆过程的时间复杂度是 O(n) ,排序过程的时间复杂度是O(n log n),所以,堆排序整体的时间复杂度是 O(n log n) 堆排序不是稳定的排序算法,因为在排序的过程,存在将堆的最后一个节点跟堆顶节点互换 的操作,所以就有可能改变值相同数据的原始相对顺序。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值