AVL 树是一种自平衡的二叉搜索树,它在每次插入或删除节点时通过旋转操作来保持树的平衡。
介绍
在 AVL 树中,每个节点都有一个平衡因子(Balance Factor),它表示该节点的左子树高度和右子树高度之差。平衡因子可以是 -1、0 或 1。当插入或删除节点导致某个节点的平衡因子超出范围时,就需要进行旋转操作来恢复树的平衡。
AVL 树支持常见的二叉搜索树操作,例如插入、删除和搜索。在执行这些操作时,AVL 树会根据节点的平衡因子进行自平衡调整。
特性
对于任意节点,其左子树和右子树的高度差不超过 1。
AVL 树中每个节点的左子树和右子树都是 AVL 树。
在 AVL 树中,查找、插入和删除操作的时间复杂度都是 O(log n),其中 n 是树中节点的数量。
旋转操作
AVL 树的平衡通过四种旋转操作来实现。
左旋转(Left Rotation):当某个节点的右子树高度较高时,通过左旋转来降低右子树的高度。
右旋转(Right Rotation):当某个节点的左子树高度较高时,通过右旋转来降低左子树的高度。
左右旋转(Left-Right Rotation):当某个节点的左子树的右子树高度较高时,通过先对左子树进行左旋转,再对根节点进行右旋转来调整树的平衡。
右左旋转(Right-Left Rotation):当某个节点的右子树的左子树高度较高时,通过先对右子树进行右旋转,再对根节点进行左旋转来调整树的平衡。
通过这些旋转操作,AVL 树可以保持平衡,避免出现不平衡的情况,确保树的高度始终保持在较小的范围内。
使用场景
AVL 树是一种高效的数据结构,适用于需要频繁插入、删除和搜索操作的场景,并且对于这些操作的时间复杂度有严格要求的情况。
代码
#include <stdio.h>
#include <stdlib.h>
// AVL 树节点结构
struct Node {
int key;
struct Node* left;
struct Node* right;
int height;
};
// 获取节点的高度
int getHeight(struct Node* node) {
if (node == NULL)
return 0;
return node->height;
}
// 获取两个数中的较大值
int max(int a, int b) {
return (a > b) ? a : b;
}
// 创建一个新节点
struct Node* newNode(int key) {
struct Node* node = (struct Node*)malloc(sizeof(struct Node));
node->key = key;
node->left = NULL;
node->right = NULL;
node->height = 1; // 新节点的高度为 1
return node;
}
// 执行右旋转操作
struct Node* rightRotate(struct Node* y) {
struct Node* x = y->left;
struct Node* T2 = x->right;
// 执行旋转
x->right = y;
y->left = T2;
// 更新节点的高度
y->height = max(getHeight(y->left), getHeight(y->right)) + 1;
x->height = max(getHeight(x->left), getHeight(x->right)) + 1;
return x;
}
// 执行左旋转操作
struct Node* leftRotate(struct Node* x) {
struct Node* y = x->right;
struct Node* T2 = y->left;
// 执行旋转
y->left = x;
x->right = T2;
// 更新节点的高度
x->height = max(getHeight(x->left), getHeight(x->right)) + 1;
y->height = max(getHeight(y->left), getHeight(y->right)) + 1;
return y;
}
// 获取节点的平衡因子
int getBalanceFactor(struct Node* node) {
if (node == NULL)
return 0;
return getHeight(node->left) - getHeight(node->right);
}
// 插入节点到 AVL 树
struct Node* insertNode(struct Node* node, int key) {
// 执行标准的 BST 插入操作
if (node == NULL)
return newNode(key);
if (key < node->key)
node->left = insertNode(node->left, key);
else if (key > node->key)
node->right = insertNode(node->right, key);
else // 不允许插入重复的节点
return node;
// 更新节点的高度
node->height = max(getHeight(node->left), getHeight(node->right)) + 1;
// 获取节点的平衡因子
int balanceFactor = getBalanceFactor(node);
// 如果节点不平衡,根据平衡因子进行旋转操作
// 左左情况
if (balanceFactor > 1 && key < node->left->key)
return rightRotate(node);
// 右右情况
if (balanceFactor < -1 && key > node->right->key)
return leftRotate(node);
// 左右情况
if (balanceFactor > 1 && key > node->left->key) {
node->left = leftRotate(node->left);
return rightRotate(node);
}
// 右左情况
if (balanceFactor < -1 && key < node->right->key) {
node->right = rightRotate(node->right);
return leftRotate(node);
}
return node;
}
// 中序遍历 AVL 树
void inorderTraversal(struct Node* root) {
if (root != NULL) {
inorderTraversal(root->left);
printf("%d ", root->key);
inorderTraversal(root->right);
}
}
int main() {
struct Node* root = NULL;
// 插入节点
root = insertNode(root, 10);
root = insertNode(root, 20);
root = insertNode(root, 30);
root = insertNode(root, 40);
root = insertNode(root, 50);
root = insertNode(root, 25);
// 中序遍历 AVL 树
printf("AVL 树中序遍历结果:");
inorderTraversal(root);
return 0;
}